2016 年,超过 30 个公司说要做自动驾驶。由于数据和人才的关系,人工智能是一个大公司占优的关系。但行业内的大公司都在积极收购。根据 The Information,过去两年时间收购人工智能公司最多的是 Google,买了 9 家公司,包括 AlphaGo。接着是苹果买了 5 家人工智能创业公司,以及同样买了 4 家人工智能公司的英特尔和 Twitter。 2012 年到 2015 年,在代表计算机智能图像识别最前沿发展水平的 ImageNet 竞赛(ILSVRC)中,参赛的人工智能算法在识别准确率上突飞猛进。 2014 年,在识别图片中的人、动物、车辆或其他常见对象时,基于深度学习的计算机程序超过了普通人类的肉眼识别准确率。 33. 这次热,背后有实际的应用驱动 这一次浪潮背后, 是机器学习在商业产品上的应用,现在它可以解决实际问题了。Google 工程师杰夫·迪恩(Jeff Dean)说:“我认为在过去 5 年,最重大的突破应该是对于深度学习的使用。这项技术目前已经成功地被应用到许许多多的场景中,从语音识别到图像识别,再到语言理解。而且有意思的是,目前我们还没有看到有什么是深度学习做不了的。希望在未来我们能看到更多更有影响力的技术。” 实际上最积极推动人工智能的公司,已经把 AI 放进可用的产品之中、解决各种日常问题了。Google 不仅要知道你搜索过什么,还能看懂你上传的图片内容。亚马逊用人工智能帮助推荐商品、调整定价。整个 Facebook 上,用户看到什么信息也都是由人工智能决定。这些看上去突然对人工智能热衷起来的公司,已经投入了多年研发。 34. 关于 AlphaGo,经常提到深度学习,这是什么? 在今年的 Google I/O 开发者大会上,Google 公司的 CEO 桑达·皮蔡解释了未来战略:“我们将会在人工智能和机器学习上加大赌注。”“因为深度学习的优势,我们现在可以让图片、视频变得更有用了。” 这样的发言不少,很多科技公司都会声称自己进入了人工智能领域,靠深度学习。 传统程序是根据事件条件,给出结果。“机器学习”的定义是不用明确编写程序,就能让计算机学习——让机器大量接触数据,自己从中找到规律,改进判断。而深度学习则是机器学习里最热门的分支,被认为推动了这次人工智能跃进。 “深度学习就是一种人工智能学习技术,通过把大量数据‘喂’进系统,尝试自己建立模型,通过模型自己做决定,就像我们现在认为的人类大脑工作的原理那样。”英国阿尔斯特大学计算机科学教授、IEEE 安全技术专家,专门研究计算机网络和系统凯文·科伦(Kevin Curran)在早先的采访中这么对《好奇心日报》解释深度学习是什么。 具体到 AlphaGo 身上。深度学习是通过审视记忆来做出决定的,因为 AlphaGo 已经看过那么多的例子,接下来深度神经网络中会自动权衡重要性然后进一步做出决定。 所以说,深度学习是通过审视记忆来做出决定的,因为 AlphaGo 已经看过那么多的例子,接下来深度神经网络中会自动权衡重要性然后进一步做出决定。 之前开发跳棋应用打败所有人类的计算机教授乔纳森·谢弗用地图来解释深度学习的工作方式: 你可以把它想象成一个带有点和连接的网络吧。就像一个地图一样,我们假设城市是点,然后连接是路。 我们来假设这地图上的连接会动态变化。例如,本来从 A 到 B 点只需要走 10 分钟,但现在看着这条路的实时路况,系统自动调整了时间,例如上下班高峰期 13 分钟,其他时间 9 分钟。这就是一个学习的例子。更进一步说,这个网络还可以建新的路,所以 A 和 B 之间的最佳路径还可能会改变。 对应到 AlphaGo 上,每一个“城市”就是一个知识点,他们之间连接的“路”就是知识与知识之间的连接。想象使用一个地图在城市中导航,每个城市的计算价值,是连接它的路数量的总和。同样的,一个知识点的价值,也依赖于它的连接情况。 当我们看纸质地图的时候,这个地图是二维的。然后想想两张地图叠在一起,在地图上不同的连接也交织着。AlphaGo 使用的是十三层的网络,所以也能让不同的知识点有更多连接的可能。 在一场围棋比赛中的特定时刻,有些知识点会使用,而另一些则不会。就像是你能去某一些城市,另外一些则禁止你入境一样。知道这些信息,会改变“城市点”的连接情况,更会改变这个城市的连接价值——这也就是每一个棋步的来源。 人工智能引起的争议不少,也没有一边倒的定论 35. 人工智能显然会抢走工作,但它会创造新的么? 一方面,人工智能取代人类就业的报告一个接一个。 网景创始人、著名风险投资人Marc Andreessen认为,“就像今天我们大多数人都从事着 100 年前不存在的工作一样,100 年后也会是如此。” (责任编辑:本港台直播) |