爱因斯坦的这一结论引起了一些好奇,比如《爱因斯坦全集》的编者之一、美国阿肯色大学的物理学家坎尼菲克(Daniel Kennefick)就对爱因斯坦得出这一结论的原因作了若干猜测。其中首先被猜测为原因的就是引力波不存在偶极辐射这一特点,因为爱因斯坦在信中直接提及了这一特点——虽然并未将之称为原因。除此之外,由于爱因斯坦提到了牛顿近似,坎尼菲克猜测他有可能尝试过从所谓的“后牛顿近似”(post-Newtonian approximation)入手研究引力波。后牛顿近似并不是研究引力波的方便手段,因为在这种近似中,以源的运动速度——确切地说是其与光速的比值 v/c——的幂次来排序的话,要计算到五次项才能显示引力波的存在(五次项对应的是引力波四极辐射带来的辐射阻尼效应),这远远超出了早期广义相对论研究的范围[6]。坎尼菲克认为,后牛顿近似中的低次项未能显示引力波的存在也有可能是爱因斯坦认为引力波不存在的原因。 坎尼菲克 坎尼菲克的这些猜测不能说没有道理,但在我看来有一定的过度解读之嫌,因为爱因斯坦所谓的“不存在与光波相类似的引力波”,从字面上看,完全有可能只是说引力波哪怕存在,也并不“与光波相类似”(比如不存在偶极辐射),而未必是全盘否定引力波的存在 (因此我们在上文中只称之为“有可能是否定的判断”)。由于爱因斯坦没有在其他文字中对这句话作出过进一步说明 (事实上也没有进一步说明的必要了,因为通信对象施瓦西在不到三个月之后就不幸去世了),他这句话的真实含义可能永远只能从猜测的意义上去解读了。但考虑到此后不久爱因斯坦就发表了明确肯定引力波存在的论文——即我们在《》中的“广义相对论的弱场近似”中提到过的他的第一篇引力波论文“引力场方程的近似积分”,我倾向于猜测“不存在与光波相类似的引力波”并不是对引力波的全盘否定,而很可能只是对研究过程中发现的诸如不存在偶极辐射之类有别于电磁波的引力波特性的一种表述。 有关引力波的另一个微妙的问题是它是否携带能量。从前面的介绍中我们看到,引力波是时空本身的波动——因为其波幅是时空偏离平直的程度 hμν。如果说音乐是空气的波动,那么引力波不妨称之为时空的乐章。但这个浪漫的名称掩不住一个问题,那就是时空是看不见摸不着的,我们对它的量度依赖于度规,度规又跟坐标的选择有关,而坐标的选择在广义相对论中却是任意的。那么,所谓时空的乐章,所谓时空本身的波动,会不会纯粹是一种坐标带来的幻象呢?这不是钻牛角尖,而是一个很正经的问题,因为如果坐标本身在波动,那么哪怕平直的时空也会看上去仿佛是波动着的,就好比用一把本身就在伸缩的尺子去量一个物体,哪怕物体的长度是固定的,每次量得的结果也可以是不同的,但那显然是尺子的问题而不是物体的长度在变。 事实上,爱因斯坦本人就曾注意到,采用不同的坐标可以得到不同类型的引力波,其中的某些类型确实只是坐标本身相对于平直时空的波动,而不是真实的引力波。以验证广义相对论的光线偏折效应而成名的英国物理学家爱丁顿(Arthur Eddington)也从坐标角度出发质疑过引力波,他发现引力波的某些分量的传播速度是跟坐标的选择有关的,从而十分可疑,他并且将这种引力波的传播速度戏称为“思维的速度”(speed of thought)[7]。这种因坐标的选择而产生的问题也可以从另一个角度来看,那就是引力场——如我们在《》中详细介绍过的——在局域惯性系中是不存在的,或者说引力场能通过坐标变换局域地消去。这个特点意味着对一个自由漂浮的质点——真正意义上没有大小的质点——来说,无论多么强大的引力波都是不存在的——美国物理学家惠勒曾用“自由漂浮就是自由漂浮就是自由漂浮”(free float is free float is free float)来强调这一引人注目的特点。假如无论多么强大的引力波对于一个自由漂浮的质点来说都是不存在的,那引力波还有实在性吗? 答案是肯定的。 (责任编辑:本港台直播) |