除此之外还需要跟老板打交道,看看老板到底想要什么。你要跟运营打交道,跟市场打交道,要跟 PR 打交道,最后你不能把用户忘了。有可能你还要和客户去打交道,因为你要做这个产品。 所以跟所有的人都去打交道几乎就是产品经理的日常。 所以回归产品经理最初的定义看这个问题,产品经理应该做什么,去重点发展的什么技能这个问题。不要被眼前你所从事的职业,或者从事的岗位,带给你的这样一个影响。需要产品经理自我审查,重新去看哪些东西是应该加强的,在技能树上哪些东西是应该补充的,然后在工作方式上哪些东西是你应该重新建立的,所以就是回到本质,回到原点。 对话机器人的困境与潜力 目前业界存在着几个很难回答的问题: 对话机器人是不是在拿着锤子找钉子?(也就是技术上已经足够成熟,Chatbot 需要找到合适的场景和需求) 对话是不是一种更高效的沟通方式? 对话机器人到底能提供什么样的用户价值? 从产品表象看起来,目前的对话机器人都缺乏「常识」跟「自学能力」。所谓的常识,就是人类都能回答的一些东西,比如,明天我要不要带伞?这个问题的隐含常识是,用户是在问明天是不是要下雨。 但是这种常识是没有办法在现在整体框架下,非常优雅的把它纳入进来。在一些场景下我们可以把问题拆分成足够小的,尝试用规则的方式把「常识」纳入进来,但这是不足够「优雅」的。而且难以规则复用。如果每个开发者总是以这样的规则做产品的话,最终结果一定是一个巨大规则库,也就是会遗留下一个史前的代码库,最后这个代码库没有人敢去碰,所有人只能往里面加东西,没人敢删东西。最后这个东西就变成一个巨大的无用的东西,成为某些人的政治遗产,成为一个历史包袱。 这种惨痛的教训,只有经历过的人才懂。 但无论如何就目前看起来的表现而言,对话机器人缺乏这种常识的能力,缺乏这种自学的能力,也就是缺乏自我,有些事你跟对话机器人说了,但它没接触过,或者说它根本不知道你要说的是什么事情,你下次问所有的问题还是得从头开始。 我尝试从技术的角度来去解释它的原因,根本问题就在于计算机的世界里,我们在技术上缺乏「语言」和「知识」的好的表示方式。 什么是好的表达方式? 在计算机里,声音和图像的表达方式,跟我们人脑是类似的。计算机上的图像的像素位置,跟我们眼睛看物体的表现方式是一样的,像素代表着颜色,像素之间的位置代表它们之间的组成形状。此外计算机还有一系列比人脑更厉害的手段去处理图像,做各种滤波,做各种 CNN 等一系列技术手段去解决它。但是人类语言的表达方式跟计算机是不一样的。计算机是用字符来表示的,每个字符在计算机里是没有意义的。而字符在人脑里中是有意义的,一系列字符联系起来会形成语境。计算机里的字符表达方式是没办法去表达语义的。 这让我们都很痛苦,很多同事以及历史上的科学家都在尝试用各种方式去解决这个问题。比如说用 Embedding的方式,把语句映射到低维的向量空间,然后用电脑中的各种运算去表达一种语义。但这还不能说是最好的方式。 这意味着对话机器人从业者的挑战是,在没有非常好的解决语言和知识表示的这个前提下,我们怎么去做产品跟市场的适配。这意味着产品经理的一个重要工作,要去找在当前技术水平下,找到合适的对话机器人应用场景。 CUI :一种新的交互模式 说到 CUI 对话式交互和 GUI 图形式交互,首先明确一点,CUI 肯定不是去替代 GUI 的。两者互相之间不是替代关系,而是各有擅长的关系的。 从效率的角度来看,GUI 的一个界面上可以展示非常多的内容,所以更适合做广度展示。而 CUI 更适合做深度展示。对话本身就可以多轮次的。如果对话是理顺的,用户可以跟机器人进行 10、20 轮对话。但在 GUI 的情况下,完成一项任务需要点击十次二十次鼠标,需要十到二十个页面才能完成这项工作的话,你会觉得这个设计过于繁琐。顺着这个逻辑去预测两种交互方式的应用场景:如果是个浅的场景,需要广度的展示,那 GUI 是合适的;如果场景需要一个深度的、若干次的沟通,有可能 CUI 是更合适。 (责任编辑:本港台直播) |