在研究此类问题的其他几篇文章中,病变检测也是一个感兴趣的话题,但是这些文章的侧重点在于更广泛或专注于特定的方法问题。这些论文将在下面简要谈论。 B. 分割和形状建模 对于一个由 2891 个心脏超声检查构成的大数据集,Ghesu 等人结合了深度学习和边缘区空间学习来做物体探测和分割。「大参数空间的有效探索」与一种增强深度网络中的稀疏性的方法的结合增强了计算效率,且该方法相较于同一个小组发布的另一个参考方法将平均分割误差减少了 13.5%。 有三组研究人员关注于大脑结构分割或脑病变。多发性硬化症脑病变分割的磁共振成像(MRI)问题由 Brosch 等人解决。他们开发了一种 3D 深度卷积编码网络,这种网络能够结合相互关联的卷积与反卷积过程。卷积过程学习到更高层次的功能,而反卷积过程预测出体素水平分割。他们将这种网络应用到两个公用数据集和一个临床试验数据集中,并将自己的方法与 5 种公用方法进行了比较。报告称,称该方法的表现「可与当前最先进的方法相媲美」。 Pereira 等人研究了磁共振成像中的脑肿瘤分割。[ 22 ]。他们使用了小的内核、更深层的架构、灰度归一化和数据增强。不同卷积神经网络架构被用于低级别和高级别的肿瘤。该方法分别对肿瘤的增强部分和核心部分进行了分割。他们在 2013 年的数据集公共挑战赛上排名第一,并在 2015 年的现场挑战赛上排名第二。 对于大脑结构分割问题,Moeskops 等人的一项研究显示,卷积神经网络在涵盖了从早产儿到老年人的五个不同年龄组病人的数据集上表现出色。一种多尺度的方法被用于实现其可靠性。该方法在 8 种组织类别中取得了良好的效果,其中 5 个数据集的 Dice 相似性系数平均值为 0.82 至 0.91。 C. 网络探究 1)数据维度问题——二维 vs 三维:我们看到的大部分数据研究采用的是二维分析。二维向三维的过渡经常遭到质疑——它是否会是性能大幅提升的一个关键所在。数据增强过程中存在一些变化,包括 2.5 维。例如在 Roth 等人的研究中,轴位、冠状位和矢状位图像以候选的结肠息肉或淋巴结中的体素为中心,并被输入到 cuda-convnet 卷积神经网络中,该网络包含了通常用于表示一张自然光图像的红、绿、蓝三色通道。三维卷积神经网络被 Brosch 和 Dou 等人明确用在了这个问题上。 2)学习方法论——无监督型 vs 监督型:当我们看网络文献时会明显发现,大部分研究为了实现分类而专注于监督型卷积神经网络。这种网络对许多应用来说非常重要,包括检测、分割和标记。然而仍有一些研究专注于无监督型方案,它们大多在图像编码、高效图像表征计划以及作为深入监督型方案的一种预处理步骤方面被证明是有用的。无监督型表征学习方法如受限波尔兹曼机(Restricted Boltzmann Machines/RBM)可能会超越标准的滤波器组,直播,因为它们直接从训练数据中学习特征描述。RBM 由一个生成型学习目标来训练;这使得网络可以从未标记的数据中学习表征,但不一定会产生最佳分类特征。Van Tulder 等人进行了一项调查研究,它结合了卷积分类 RBM 中生成型和判别型学习目标的优点。该研究表明学习任务的组合形式优于纯粹的判别型或生成型学习。 3)训练数据注意事项:卷积神经网络实现了对数据驱动型、极具表征性、分层递阶的图像特征的学习。在许多应用领域中(见期刊),这些特征已被证明是一个十分强大且可靠的表征。要提供这样一个丰富的表征和成功的分类,需要足够多的训练数据。所需数据量是一个有待探讨的关键问题。相关问题包括以下内容:我们如何最有效地使用所拥有的训练数据?在无法获得数据的情况下我们能做些什么?以及最后是否存在获取数据并进行医学注释的替代方法? 其中一些问题由该期刊中的一些论文解决。Van Grinsven 等人试图通过动态选择训练期间被错误分类的负样本来改善和加速解决医学图像分析任务的卷积神经网络训练。卷积神经网络训练过程是一个连续的过程,需要多次迭代(或多个时期)来优化网络参数。在每一个时期,一个样本的子集是从训练数据中随机选择的,并通过反向传播和最小化代价函数来呈给网络以更新其参数。医学领域中的分类任务往往是一个正常型/病理型的判别任务。在这种情况下,正常型类别尤其会被过度表征;此外由于每张图像中正常型组织的重复型模式,大多数正常型训练样本是高度相关的。其中只有一小部分会包含有用信息。在学习过程中对这些数据进行同等处理会导致在无用的正常型样本上浪费许多次训练迭代,使卷积神经网络的训练过程花费不必要的时间。能够识别有用的正常型样本的一种方法(如该研究所示)提高了卷积神经网络学习过程的效率并减少了训练时间。 (责任编辑:本港台直播) |