4)迁移学习和微调:在像 ImageNet 一样全面注解的医疗成像领域中获取数据仍然是一个挑战。当没有足够多的数据可用时,有几种方法可以提供帮助:1)迁移学习:由自然的图像数据集或由一个不同医疗领域中所预训练过的卷积神经网络模型(监督型)被用于手头一个新的医疗任务。一种方案是,一个预训练过的卷积神经网络被施加到一张输入图像中,然后其输出从网络层中被提取出来。所提取的输出被当做特征并被用于训练一个单独的模式分类器。例如在 Bar 等人的研究中,预训练卷积神经网络被用来作为一个鉴定胸部病理的特征生成器。在 Ginneken 等人的研究中,基于卷积神经网络的特征与手动添加的特征被整合在一起,实现了一个结节(nodule)检测系统中的性能提升。2)微调:确实有一个中等大小的数据集可用于手头任务,一个参考方案是,在进一步的监督型训练完成后,将一个预先训练的卷积神经网络作为几个(或全部)网络层的初始化来使用,在手头任务中使用新数据。 迁移学习和微调是在医疗成像应用中使用深度卷积神经网络的关键部分。对这些问题进行探讨的是 Shin 和 Tajbakhsh 等人的研究工作。其研究中的实验结果一致表明,使用带有微调的预训练神经网络能够达到最佳效果,无论是特定应用领域(Tajbakhsh 等人)还是所有网络架构(Shin 等人)。Tajbakhsh 等人的进一步分析表明,深度微调在性能提升方面优于浅度微调,而训练集尺寸的降低也使得使用微调的重要性得到提高。在 Shin 等人的研究中,GoogleNet 架构相比其他较浅深度架构实现了最先进的纵隔淋巴结检测。 5)真实标注数据(Ground Truth)——来源于专家与非专家:对公开真实标注数据的缺乏,以及每次医疗任务中收集这些数据的难度,加上成本和时间开销,这些都是医疗领域中令人望而却步的限制因素。虽然众包实现了对现实世界图像的大型数据库的注释,但其在生物医学目的上的应用却需要一个更加深入的理解力,因而需要对实际注释任务有更精确的定义(Nguyen 和 McKenna 等人)。专家任务被外包给非专家用户的事实可能会导致杂乱的注释,引起用户之间的分歧。许多问题出现在医学专家与非专业人士的知识结合上,比如怎样结合信息源,如何由他们在性能和其他方面被事先证明过的准确性来评估和混合输入权重。这些问题由 Albarqouni 等人解决。他们提出一种结合了聚合层 aggregation layer 的网络,该聚合层被集成到卷积神经网络中,从而将源于群众注释的学习输入作为网络学习过程的一部分。显示结果对深度卷积神经网络学习的功能给出了有价值的见解。有关医学领域中众包研究最惊人的事实竟是这样一个结论:一群非专业的、没有经验的用户实际上可以做得像医学专家一样好。Nguyen 和 McKenna 等人在放射图像的研究中也观察到了这点。 D.创新应用和新奇应用案例 Kallenberg[32] 的工作是以乳腺 X 片图像为输入数据源,运用无监督式特征学习来为乳腺的疾病风险打分。他们展示了一种从无标记数据来学习层次特征的方法,然后这些特征将会直接输入到一个简单分类器中。在这个分类器中,将会进行 2 类不同的操作:1)乳房密度的图像分割,2)乳腺 X 片纹理的打分。分类器在这两方面的表现都非常优秀。为了控制训练模型的容量,通过一个稀疏正则化优化来控制稀疏的时间和范围。无监督式学习过程中卷积层其实可以看成是一个自动编码器 autoencoders;在监督学习部分,(预先训练好的)权值和偏差值会进一步运用 softmax 回归函数来微调。 Yan[33] 等人的工作中设计了一个多阶段(multi-stage)深度学习框架来处理图像分类问题并且将其用于人体局部特征识别。在预训练阶段,通过多示例学习(multi-instance learning)来训练卷积神经网络,从而获取当前训练数据切片中里最具有辨别力的局部图块和无效讯息的局部图块。在强化阶段,预训练好的卷积神经网络将进一步通过相应局部图像来训练图像分类器,从而强化他的分类能力。这个多示例深度学习方法的突出点在于可以自动的完成区分性的局部图像和无效讯息的局部图像的识别。因此,不需要事先的人工标注工作。 (责任编辑:本港台直播) |