本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

深度 | 变革的开始,深度学习将如何改变医疗成像领域?(6)

时间:2016-12-11 17:11来源:本港台直播 作者:118开奖 点击:
自 2007 年以来,在诸如 MICCAI,ISBI 和 SPIE 医学成像等医学成像会议上举办竞赛研讨会已经成为一种习惯。网站上有大量的数据集和正在进行的研究()。使

自 2007 年以来,在诸如 MICCAI,ISBI 和 SPIE 医学成像等医学成像会议上举办竞赛研讨会已经成为一种习惯。网站上有大量的数据集和正在进行的研究()。使用这些公共基准数据集相对于仅使用公共数据集具有明显的优势:竞赛提供了要解决的任务的精确定义,并且已经定义一个或多个评估度量,给各种算法提供了公平的评价标准。如果没有这样的评价标准,即使各个算法使用相同的数据集,也难以将相同问题的不同方法进行比较。例如,其中的三个研究(Anthimopoulos 等 [16],Shin 等 [17] 和 van Tulder 等 [18])使用带有医学注释的相同胸部间质性肺疾病 CT 扫描数据集,但是他们所报告结果却不同。

在这一方面,一项关于这个问题的研究 (Setio et al. [12]) 在一个对肺结节的挑战上初见成果。这项挑战是由 IEEE 和 ISBI 会议共同组织,所使用的是公开的 LIDC/IDRI 数据集,这篇文章中所提建立的系统可直接与其替代方法进行比较。

去年已经有了一个以医疗图像分析为平台,基于机器学习应用的比赛。Kaggle 组织了一次关于识别糖尿病患者眼底彩色图像的竞赛,金为 100000 美金。661 支队伍提交了结果,一共提供了 8000 张图片。这些数据被用于一项特殊研究 (van Grinsven et al. [24])。最近。第二届通过核磁共振图片测量心脏体积,得出射血分数图像医学图像分析竞赛结束了。一共 192 支队伍参加了比赛,奖金为 200000 美金。 在这两个比赛中,最优秀的竞争者都在使用卷积神经网络。在所使用的较为好的算法中,使用大数据集和深度学习的参赛者显出了更大的优势,我们希望这种趋势能继续下去。在这种情况下,在接下来的一系列世界范围内关于提高各种成像的癌症筛查的准确性的竞争,可能会引起相关人士的关注。

Albarqouni 等人的研究显示,在线平台,例如比赛中的那些平台,可以用于多种目的。它们会促进新的合作,形成解决方案,也能够通过众包而获得大量数据的。

最后,我们感谢总编的指导,TMI 办公室的帮助,最重要的是作者和审稿人的巨大努力。这篇文章给出了医学影像,这个迅猛发展的领域的快照。我们希望你会喜欢它,并期待未来你对这个领域的贡献。

  原文链接:?arnumber=7463094

©本文为机器之心编译文章,转载请联系本公众号获得授权

  ?------------------------------------------------

加入机器之心(全职记者/实习生):[email protected]

投稿或寻求报道:[email protected]

广告&商务合作:[email protected]

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容