回归网络在医疗图像里的使用不是很常见。Miao 等人提出了一种基于卷积神经网络的回归网络,来实现实时的二维/三维配准。他们提出了三个算法来简化潜在的映射对象回归,并且在 CNN 回归模型中加入了一种强壮的非线性模型。从这个网络的输出结果来看,深度学习算法比之前的最优算法的结果更准确且鲁棒性更好,大幅度提升了基于灰度的二维/三维配准进程。 目前我们仍然在探索神经网络可以应用的领域,以及在哪些领域上他们的应用和任务维度上会产生持续的影响。在一个开创性的研究中,Golkov[35] 提出了一个原始化的论证,他运用深度学习来简化弥散 MRI(核磁共振)图像数据处理,优化后仅需一步。他们的研究表明,这种改进使得人们从一个先进的模型获取标量测量数据的扫描时间减少了 12 倍,并且不需要运用扩散模型就能识别异常。揭示扩散加权信号和显微组织特性之间的关系是值得正视的。Golkov[35] 表示,运用深度神经网络也许可以揭示这样的关系:弥散加权成像(DWIs)可以直接被作为输入数据,而不是通过模型拟合获得的标量测量值来处理。这项研究表明基于逐个立体像素的显微组织预测,以及基于弥散加权成像值的自动无模型图像分割可以用于健康组织和 MS 病灶的模型训练中。扩散峰广为人知的是通过 12 个数据点、凸起方向弥散以及仅 8 个数据点的密度估计来得到。这个为临床研究提供了快速且鲁棒性更好的方法,同时也表明标准的数据处理过程可以用深度学习的方法来简化。 讨论:关键问题和展望 已有的很多工作显示,深度网络的的使用提升了目前的最高水平,且这些提升在很多领域都是一致的。通常情况下,深度学习给出解决方案的所取得的进步是相对直接的,这一点我们可以从医疗计算领域看到这一明显的进步。在《医疗影像中的深度学习:一项令人激动的新科技的综述和展望》一文中,提出了这样一些问题:2012 年的大规模种类识别理论有了 10% 的进步,但如何在应用方面获得实质性的飞跃呢?所提出的问题正确吗?探索的方向正确吗?使用的图像表达技术足以支撑吗(比如,2D 还是 3D)?需要从每个医疗案例中获得更多的数据吗?还是转向深度学习更高效?还有更多的相关问题在这篇文章的第二部分被提出来。大部分的问题丞待解决。 在这篇文献中,可以看出,虽然通过深度网络可以接触到监督式学习和无监督式学习,但是似乎大部分的工作都在使用监督式学习。那么在医学领域呢?数据量是一个关键因素,在形式上就要求结合监督式学习和无监督式学习双方的优点。在医学领域,由于很难获取大数据(人工标注难以获得),所以该领域需要更多的半监督式学习和监督式学习。 此文包括很多的网络构架。从当前已发表的论文中可以看出可变性是非常大的。选择已知的构架,直播,设计任务稳定的构架,跨构架融合等都可能导致可变性。我们可以就此提出一个有趣的问题:如果一个非常深层的残差网络,跨过了 152 层,在 ILSVRC 2015 层分类任务上表现最好,那么应用到医疗上也可以获得很好的结果吗? 深度学习一个很重要的方面就是它可以从大量的训练数据中获益。基于 ImageNET 数据集在 ILSVRC 竞赛后,获得了计算机视觉上的巨大突破()。相比于其他论文中所用到的训练数据集和测试数据集,这个特殊问题所用到的数据集非常大(百万和一千一百相比)。如果我们能构建了类似这么大的公共医学图像数据集,我们的社会将受益很大。 为什么这项工作非常有挑战性呢?第一,很难为构建这样一个数据集筹措资金;第二,要对医学图像数据进行高质量的注解,就需要医学专业知识,这不仅非常稀缺且非常昂贵;第三,与自然图像相比,隐私问题使得医疗数据更难以获得;第四,医疗成像的应用广度需要收集更多不同的数据集。尽管存在着这么多障碍,我们还是在数据收集和共享数据方面有了很快的进展。许多公共数据集已经发布,并且现在在实践中使用它们了。例如,VISCERAL 和癌症成像档案,Roth et al. [13] 和 Shin et al.[17],通过对 CT 扫描扩大的淋巴结图像进行分析而获得的数据集,已经在癌症成像档案上公开,同一研究组也在线上公开了胰腺数据集。 (责任编辑:本港台直播) |