讲完什么是马约拉纳费米子,我们说说它有什么有趣的性质。回到海平面的雨滴和气泡的比喻,对于狄拉克费米子来说,海平面以上和以下的自由度是独立的;而对马约拉纳费米子来说,它们是上下严格地镜像对称。因此比起狄拉克费米子,马约拉纳费米子只有一半的自由度。可以说,一个马约拉纳费米子等于半个狄拉克费米子。当我们用量子场论描述这两种费米子的时候,他们的关系很像实数和复数。狄拉克费米子就像一个复数,而马约拉纳费米子像一个实数。在任何电子组成的系统中,尽管我们可以通过超导库伯对来实现马约拉纳费米子,总的自由度的数目却不会变。所以N个电子的体系,马约拉纳费米子的数目一定是偶数2N。
既然这样,那么说一个马约拉纳费米子具有半个自由度不就没有任何意义了吗?反正他们总是成对出现。事实并非如此。前面说的玻色凝聚体中,局部看起来玻色子(库伯对)好像可以凭空产生或者消失,只有看整个系统才会发现总的玻色子数是守恒的。跟这个逻辑非常类似,马约拉纳费米子的数目在整个系统中一定是偶数,但局部却可以出现奇数。为了实现这个单个的马约拉纳费米子,我们需要把它的波函数限制在一个局域的地方。一个最简单的实现是下图里的模型(称为Kitaev chain,或者Kitaev Majorana chain,由Alexei Kitaev在2001年提出)。考虑一个简单的体系,每个原子周围只有一个电子态能级,所有原子排成一列。每个电子能级可以被看成是两个马约拉纳零能模。粗略地讲,这两个马约拉纳零能模是能级的占据态()和非占据态()的两种叠加和,在图中用红点和蓝点来代表。(准确地说,这里的“态”实际上是“算符”。)下一步是通过一个合适的超导配对,可以把每个原子上的蓝色马约拉纳零模和临近的红色马约拉纳零模耦合起来。这样做的结果是被耦合的马约拉纳零模变成了一个具有非零能量的能级,而在原子链两端的马约拉纳非零模被孤立了。这样如果只看这个原子链的左半边,我们就会看到一个孤立的马约拉纳零模,一个只有半个自由度的奇怪东西。
说一个东西只有半个自由度似乎很难理解,但如果我们回到整个系统,把左边和右边端点的孤立的马约拉纳费零模合起来看就比较容易理解了。左右两个马约拉纳非零模合起来等价于一个能级,具有一个自由度。也就是说,左右合起来一共有两个状态或,即这个能级中的占据数可以是0或者是1。那么为什么说这两个状态是左右两边各半个自由度,而不是,比如说,左边有一个自由度右边没有呢?因为如果对左边端点的马约拉纳零能模做任何操作(比如在那里加上一个外来的电子),造成的唯一可能效果是把变成或者把变成。同样,对右边端点做任何操作也是把这两个状态变来变去。这就好像楼上楼下各有一个开关,控制的是同一盏电灯,所以说左右两端点各有半个自由度。如果左右两端点离得很远,没法耦合起来的话,他们共同拥有的这两个状态就必须是0能量的(因为给他们能量的唯一方式是把他们耦合起来,把原子链弯成一个环)。如果我们把其中一个态看成体系的基态,另外一个态可以看成一个具有0能量的激发态。这一零能量的激发态导致了实验中观测到的处于零电压的电导尖峰。 (责任编辑:本港台直播) |