在我们即将向特斯拉车主推送的8.0版本软件中,最显著的就是Autopilot自动辅助驾驶升级。我们通过使用车辆搭载的雷达,采用更先进的信号处理,生成一幅世界的影像。该雷达是Autopilot自动辅助驾驶配套硬件的组成部分,全部2014年10月之后出厂的特斯拉车型都搭载了这一雷达。一直以来,该雷达一直是主摄像头以及图像处理系统的辅助传感器。 所以如果我们把7.0时代的Autopilot称之为Autopilot 1.0,那么8.0里面的Autopilot 称之为2.0毫不为过,它根本不是对于之前1.0的修补,而是彻底重写了整个自动辅助驾驶: Autopilot 1.0 基于Mobileye的图像识别技术,主要数据来自于车顶的Mobileye摄像头,车首的雷达和周边雷达只是提供辅助信息。 而Autopilot 2.0则是基于雷达识别环境,主要数据来源于车身上的雷达,而辅助数据则来源于车队学习的高精度地图和白名单。 所以我们之前的分析就派上用场了,通过雷达来成像主要难点就是如何解决误报False Positive,正是因为雷达成像的特殊性,一个很小的金属物体可能会被识别成一堵墙,所以人们才不费周折的去用高成本Lidar,但是Tesla确通过自己的技术巧妙解决了。 Tesla专门用三段来描述这个例子: 特定波长的光子可以轻易地穿越雾、粉尘、雨、雪,然而金属物品看起来如同镜子。雷达可以看见人体,但是他们被显示为部分透明。木制品和涂色塑料制品这些对人类而言显而易见的物品,对雷达而言,几乎都像玻璃一样透明。 另一方面,任何凹型的金属表面不仅仅会反光,更会将反射信号放大数倍。比如,一个丢弃在公路上的易拉罐,如果凹状瓶底朝向车头,就会被显示成为一个大型的危险障碍物,但这时候,你一定不想猛踩刹车而避过这个易拉罐。 因此,如何避免由于错误报警而导致车辆停止行进,是使用雷达带来的一个大问题。在车辆即将撞上大型物体时,刹车是必要的 ---- 但不应该是为了避开一个易拉罐。这些不必要的刹车行为,轻则令人不快,重则导致驾驶员受伤。 所以Tesla想说的就是: 我们解决雷达的误报问题了!看到这里的读者是否会会心一笑呢?Amnon博士口中自动驾驶最难攻克的难关就这样被技术驯服了。
接下来就是讲为什么他们会采用雷达替换掉图像识别技术: 为了解决误识别障碍物从而导致频繁刹车制动问题的第一部分,是拥有更为详细的点云数据。空中升级8.0系统对现有硬件进一步挖掘,让雷达可以探测到的周边的物体(数量)达到以前的六倍,并且有能力在每一个物体上获得更多细节信息。 减少误识别的第二部分包括整合每隔0.1秒获取的雷达快照,汇编成为现实场景的"3D"影像。(通常)通过单一影像帧,很难知道物体是移动的,静止的,或者只是反光造成的虚像。通过比较包含车辆速度、预期轨迹信息的连续影像帧,车辆可以分辨前方物体是否是真实的,同时预估发生碰撞的概率。 一句话来说就是: 我们的工程师解决了雷达的成像问题!不再需要摄像头主唱了 那么雷达下的世界会是什么样呢?目前我们只能瞎想了,借用Google 自动驾驶时的Lidar数据图,在Tesla的雷达眼里会不太一样:
最后一个重点,通过车队学习的高精度数据去对比雷达探测的实景来白名单过滤: 第三部分就更加复杂。当行驶中的车辆正在接近一个高速公路上坡时视线上方的路标,或当车辆在通过带有交通标志的桥下,这种视觉上的落差,经常看起来像是将要发生碰撞。而导航和高精准GPS都不足以判定车辆是否能从此物体下方安全通过或发生碰撞。到车辆接近,道路坡度改变时,再刹车为时已晚。 这种情况下,车队学习功能便派上用场。一开始,车队不会采取任何行动,而只是识别出路标、桥梁和其他静止的物体,并通过雷达绘制地图。车载计算机系统在后台将预计是否应该刹车,并与驾驶员的实际行为进行比较,并将这些数据上传至特斯拉数据库。如果一些车辆安全通过被雷达标定的物体,无论Autopilot自动辅助驾驶是否开启,这个物体将被加入地理编码的白名单(被标注安全)。 (责任编辑:本港台直播) |