本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

码报:【j2开奖】专访吴甘沙:无人驾驶的商业化破局,与驭势科技的从1到10(2)

时间:2017-05-26 05:39来源:668论坛 作者:118KJ 点击:
目前,主流采用的定位方式是GPS定位,但GPS信号在楼宇遮挡的情况下就会迅速衰减,到了地下停车场,GPS就太弱了,必须找到一种新的定位方法,这里会用

  目前,主流采用的定位方式是GPS定位,但GPS信号在楼宇遮挡的情况下就会迅速衰减,到了地下停车场,GPS就太弱了,必须找到一种新的定位方法,这里会用到的是SLAM(Simultaneous localization and mapping),即能够同时完成定位和地图测绘。

  据吴甘沙介绍,目前驭势的方案采用视觉SLAM与激光雷达SLAM两种方法,在具体实现路径上,驭势会先去获取地下停车场的CAD图,将视觉和激光雷达点云与CAD进行匹配,在此基础上进行传感器的多感知融合定位,另外,驭势还在地下车库中设置了很多二维,作为无人驾驶车参考的标记,类似航路系统中的waypoint,即航途基准点。

  除了这些,地下车库还有一些比较独特、需要具体去解决的攻关难题。比如,atv,地下停车场的灯光较为复杂,摄像头方案常见的致盲等问题便是因为光线突然变化,对此,驭势的解决方案是以激光雷达辅助摄像头,以传感器融合的方式做多感知冗余。

  此外,这个场景还涉及到人车混行,彭进展介绍道,驭势对此进行了多次连续避障训练,同时由于加入了行人运动轨迹预测、行为预测,所以车辆在实际行进时会比较流畅,不会有顿挫感。驭势还对地库的矮小障碍物闪避进行了模拟训练,用以应对地库中出现的儿童、动物等道路参与者。

  空间狭小也是地库中必须要解决的问题,这主要体现在地库中转弯半径小,类似人类驾驶员在出入停车库时应对的螺旋形道路对无人车就是典型的挑战,另外,驭势科技还对整体的规划控制问题进行了优化,比如面对减速带的情况。整体来说,驭势科技与来福士进行配合,一天内将无人摆渡车项目部署上线。

  驭势科技在深度学习方面的想法

  吴甘沙坦言,从Demo到实际场景的运营,其复杂度、机动性是上了一个台阶的。这就像从原来叶问对着咏春木人桩练习,到与少林18铜人对战,由静入动,在这种情况下,如何判断态势、评估他者(人或动态物体)的动机、预测其行为,并合理获得路权至关重要。

  比如,老司机在开车时会根据前方车速快慢决定是否超车、并线,目前,驭势科技使用的是强化学习的方法模仿老司机,在100公里的时速下,可以在前车行驶过慢时进行打灯并线、超车、之后再并线回到原来车道。

  但使用大数据驱动深度学习也有命门:即机器很可能会出现训练集中毒、偏差——人举着哑铃的图片作为数据输入,不断训练的结果是,机器会将这段举着哑铃的胳膊也当成哑铃的组成部分。

  此外,深度学习最著名的命门,也是至今学术界和研发人员未解决的问题,就是人们并不明白系统是怎么工作的,其原理是一个黑盒子,不具有可解释性。这个选择为什么好、为什么差甚至一定程度上是随机的。

  比如,Christian Szegedy等人曾在ICLR2014发表的论文中提出了对抗样本(Adversarial examples)的概念,即在数据集中通过故意添加细微的干扰所形成的输入样本,受干扰之后的输入导致模型以高置信度会得出一个错误的输出。在他们的论文中,他们发现包括卷积神经网络(Convolutional Neural Network, CNN)在内的深度学习模型对于对抗样本都具有极高的脆弱性。

  我们人眼可以轻而易举识别出来的图像、物体,假以对抗样本,机器通过深度学习却完全识别不出来。

  

码报:【j2开奖】专访吴甘沙:无人驾驶的商业化破局,与驭势科技的从1到10

  吴甘沙认为,在开放动态环境下的无人驾驶需要更强壮的AI,要建立这样一种AI,需要深度学习和强化学习两种打法结合。强化学习追求可解释的逻辑推理(理性思考)、强调常识、经验、可以积累的背景知识,同时辅以迁移学习的举一反三、基于贝叶斯的因果推理。

  现在在开放道路无人驾驶做得最好的是谷歌Waymo,每5000千英里(合8000多公里)需要一次人类干预,特斯拉每3英里需要一次人类干预,而自动驾驶新秀Uber则每英里需要一次人类干预。但即使是做得最好的Waymo,也不及人类驾驶员的万分之一,人类驾驶员每9000万英里出一次小型事故。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容