本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

wzatv:资源 | 生成对抗网络及其变体的论文汇总(3)

时间:2017-04-21 23:00来源:118图库 作者:开奖直播现场 点击:
SL-GAN—半隐 GAN:学习根据属性生成和修改面部图像(Semi-Latent GAN: Learning to generate and modify facial images from attributes):https://arxiv.org/abs/1704.02166 SRGAN—使用一

SL-GAN—半隐 GAN:学习根据属性生成和修改面部图像(Semi-Latent GAN: Learning to generate and modify facial images from attributes):https://arxiv.org/abs/1704.02166

SRGAN—使用一个 GAN 实现图片逼真的单一图像超分辨率(Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network):https://arxiv.org/abs/1609.04802v3

S?2;GAN—使用风格与结构对抗网络建模生成图像(Generative Image Modeling using Style and Structure Adversarial Networks):https://arxiv.org/abs/1603.05631v2

SSL-GAN—通过语境条件下的 GAN 实现半监督学习(Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks):https://arxiv.org/abs/1611.06430v1

StackGAN—StackGAN:通过堆栈 GAN 合成文本到图片的逼真图像(StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks):https://arxiv.org/abs/1612.03242v1

TGAN—时间 GAN(Temporal Generative Adversarial Nets):https://arxiv.org/abs/1611.06624v1

TAC-GAN—TAC-GAN—文本条件下的辅助生成器 GAN(TAC-GAN—Text Conditioned Auxiliary Classifier Generative Adversarial Network):https://arxiv.org/abs/1703.06412v2

TP-GAN—超越人脸旋转:通过保有正面视图合成打造用于逼真和身份的整体与局部感知 GAN(Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis):https://arxiv.org/abs/1704.04086

Triple-GAN—三重 GAN(Triple Generative Adversarial Nets):https://arxiv.org/abs/1703.02291v2

VGAN—作为能量模型变分训练的 GAN(Generative Adversarial Networks as Variational Training of Energy Based Models):https://arxiv.org/abs/1611.01799

VAE-GAN—使用学习的相似性度量进行超像素自编(Autoencoding beyond pixels using a learned similarity metric):https://arxiv.org/abs/1512.09300

ViGAN—通过变分信息 GAN 生成和编辑图像(Image Generation and Editing with Variational Info Generative AdversarialNetworks):https://arxiv.org/abs/1701.04568v1

WGAN—Wasserstein GAN:https://arxiv.org/abs/1701.07875v2

WGAN-GP—Wasserstein GAN 的改进训练(Improved Training of Wasserstein GANs):https://arxiv.org/abs/1704.00028

WaterGAN—WaterGAN:实时校正单目水下图像色彩的无监督生成网络(WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images):https://arxiv.org/abs/1702.07392v1

机器之心报道 GAN 相关文章

j2直播 (责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容