SL-GAN—半隐 GAN:学习根据属性生成和修改面部图像(Semi-Latent GAN: Learning to generate and modify facial images from attributes):https://arxiv.org/abs/1704.02166 SRGAN—使用一个 GAN 实现图片逼真的单一图像超分辨率(Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network):https://arxiv.org/abs/1609.04802v3 S?2;GAN—使用风格与结构对抗网络建模生成图像(Generative Image Modeling using Style and Structure Adversarial Networks):https://arxiv.org/abs/1603.05631v2 SSL-GAN—通过语境条件下的 GAN 实现半监督学习(Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks):https://arxiv.org/abs/1611.06430v1 StackGAN—StackGAN:通过堆栈 GAN 合成文本到图片的逼真图像(StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks):https://arxiv.org/abs/1612.03242v1 TGAN—时间 GAN(Temporal Generative Adversarial Nets):https://arxiv.org/abs/1611.06624v1 TAC-GAN—TAC-GAN—文本条件下的辅助生成器 GAN(TAC-GAN—Text Conditioned Auxiliary Classifier Generative Adversarial Network):https://arxiv.org/abs/1703.06412v2 TP-GAN—超越人脸旋转:通过保有正面视图合成打造用于逼真和身份的整体与局部感知 GAN(Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis):https://arxiv.org/abs/1704.04086 Triple-GAN—三重 GAN(Triple Generative Adversarial Nets):https://arxiv.org/abs/1703.02291v2 VGAN—作为能量模型变分训练的 GAN(Generative Adversarial Networks as Variational Training of Energy Based Models):https://arxiv.org/abs/1611.01799 VAE-GAN—使用学习的相似性度量进行超像素自编码(Autoencoding beyond pixels using a learned similarity metric):https://arxiv.org/abs/1512.09300 ViGAN—通过变分信息 GAN 生成和编辑图像(Image Generation and Editing with Variational Info Generative AdversarialNetworks):https://arxiv.org/abs/1701.04568v1 WGAN—Wasserstein GAN:https://arxiv.org/abs/1701.07875v2 WGAN-GP—Wasserstein GAN 的改进训练(Improved Training of Wasserstein GANs):https://arxiv.org/abs/1704.00028 WaterGAN—WaterGAN:实时校正单目水下图像色彩的无监督生成网络(WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images):https://arxiv.org/abs/1702.07392v1 机器之心报道 GAN 相关文章
,j2直播 (责任编辑:本港台直播) |