f-GAN—f-GAN:使用变分散度最小化训练生成式神经采样器(f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization):https://arxiv.org/abs/1606.00709 GoGAN—Gang of GANs: 使用最大间隔排序的生成对抗网络(Generative Adversarial Networks with Maximum Margin Ranking):https://arxiv.org/abs/1704.04865 GP-GAN—GP-GAN: 走近逼真的高分辨率图像混合(Towards Realistic High-Resolution Image Blending): IAN—使用自省的对抗性网络进行神经图像编辑(Neural Photo Editing with Introspective Adversarial Networks):https://arxiv.org/abs/1609.07093 iGAN—在自然图像流形上的生成式视觉操作(Generative Visual Manipulation on the Natural Image Manifold):https://arxiv.org/abs/1609.03552v2 IcGAN—图像编辑的可逆条件生成对抗网络(Invertible Conditional GANs for image editing):https://arxiv.org/abs/1611.06355 ID-CGAN- 使用条件生成对抗网络的图像 De-raining(Image De-raining Using a Conditional Generative Adversarial Network): Improved GAN—生成对抗网络训练的改进技术(Improved Techniques for Training GANs):https://arxiv.org/abs/1606.03498 InfoGAN—InfoGAN:信息最大化生成对抗网络的可解释性表征学习(InfoGAN:Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets): LR-GAN—LR-GAN:用于图像生成的分层递归生成对抗网络(LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation): LSGAN—最小二乘生成对抗网络(Least Squares Generative Adversarial Networks): LS-GAN—利普希茨密度上的损失敏感型生成对抗网络(Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities): MGAN—使用马尔可夫过程的生成对抗网络预计算实时纹理合成(Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks):https://arxiv.org/abs/1604.04382 MAGAN—MAGAN: 生成对抗网络的边缘自适应(Margin Adaptation for Generative Adversarial Networks): MalGAN—基于生成对抗网络的黑箱攻击的对抗性恶意实例生成(Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN): MARTA-GAN—遥感图像的深度无监督表征学习(Deep Unsupervised Representation Learning for Remote Sensing Images):https://arxiv.org/abs/1612.08879 McGAN—McGan: 均值和协方差特征匹配生成对抗网络(Mean and Covariance Feature Matching GAN): MedGAN—使用生成对抗网络生成多标注的离散电子健康记录(Generating Multi-label Discrete Electronic Health Records using Generative Adversarial Networks): MIX+GAN—生成对抗网络中的泛化与均衡(Generalization and Equilibrium in Generative Adversarial Nets /GANs):https://arxiv.org/abs/1703.00573v3 MPM-GAN—生成对抗网络多智能体的信息传递(Message Passing Multi-Agent GANs):https://arxiv.org/abs/1612.01294 MV-BiGAN—多视角生成对抗网络(Multi-view Generative Adversarial Networks): pix2pix—条件对抗网络的图到图翻译(Image-to-Image Translation with Conditional Adversarial Networks):https://arxiv.org/abs/1611.07004 PPGN—即插即用生成网络:在潜在空间中生成条件迭代图像(Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space):https://arxiv.org/abs/1612.00005 PrGAN—从多对象 2D 视角归纳 3D 模型(3D Shape Induction from 2D Views of Multiple Objects):https://arxiv.org/abs/1612.05872 RenderGAN—RenderGAN:生成逼真标注数据(RenderGAN: Generating Realistic Labeled Data):https://arxiv.org/abs/1611.01331 RTT-GAN—可视段落生成的循环主题转换 GAN(Recurrent Topic-Transition GAN for Visual Paragraph Generation):https://arxiv.org/abs/1703.07022v2 SGAN—堆栈 GAN(Stacked Generative Adversarial Networks):https://arxiv.org/abs/1612.04357v4 SGAN—空间 GAN 的纹理合成(Texture Synthesis with Spatial Generative Adversarial Networks):https://arxiv.org/abs/1611.08207 SAD-GAN—SAD-GAN:通过 GAN 合成自动驾驶(SAD-GAN: Synthetic Autonomous Driving using Generative Adversarial Networks):https://arxiv.org/abs/1611.08788v1 SalGAN—SalGAN:通过 GAN 预测视觉显著度(SalGAN: Visual Saliency Prediction with Generative Adversarial Networks):https://arxiv.org/abs/1701.01081v2 SEGAN—SEGAN:语音增强 GAN(SEGAN: Speech Enhancement Generative Adversarial Network):https://arxiv.org/abs/1703.09452v1 SeqGAN—SeqGAN:具有策略梯度的序列 GAN ( SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient):https://arxiv.org/abs/1609.05473v5 SketchGAN—用于草图检索的对抗训练(Adversarial Training For Sketch Retrieval):https://arxiv.org/abs/1607.02748 (责任编辑:本港台直播) |