本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

wzatv:资源 | 生成对抗网络及其变体的论文汇总

时间:2017-04-21 23:00来源:118图库 作者:开奖直播现场 点击:
参与:黄小天、蒋思源 生成对抗网络(GAN)是近段时间以来最受研究者关注的机器学习方法之一,深度学习泰斗 Yann LeCun 就曾多次谈到 这种机器学习理念的巨大价值和未来前景。而各

参与:黄小天、蒋思源

生成对抗网络(GAN)是近段时间以来最受研究者关注的机器学习方法之一,深度学习泰斗 Yann LeCun 就曾多次谈到 这种机器学习理念的巨大价值和未来前景。而各类 GAN 的变体也层出不穷,atv,近日机器之心也报道过,而本文更注重于从 GAN 及其变体的角度对其论文做一个完整的梳理。

  项目地址:https://deephunt.in/the-gan-zoo-79597dc8c347

每一周都会有关于 GAN 的新论文出现,你很难对其一一记录,而众多 GAN 的新命名又使其难上加难。如果你想了解更多关于 GAN 的信息,可参阅 ,或者 Goodfellow 于 。

  因此,下面是一个持续更新的最新列表,通过 GAN 名称+论文(并附 arXiv 论文地址)的形式汇总并编排了所有出现的 GAN:

GAN—生成对抗网络(Generative Adversarial Networks):https://arxiv.org/abs/1406.2661

3D-GAN—通过 3D 生成对抗网络建模学习概率性目标形潜在空间(Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling):https://arxiv.org/abs/1610.07584

AdaGAN—AdaGAN:增强生成模型(AdaGAN: Boosting Generative Models):

AffGAN—图像超分辨率的折旧 MAP 推断(Amortised MAP Inference for Image Super-resolution):https://arxiv.org/abs/1610.04490

ALI—对抗性推断学习(Adversarially Learned Inference):https://arxiv.org/abs/1606.00704

AMGAN—带有最大化激活标注数据的生成对抗网络(Generative Adversarial Nets with Labeled Data by Activation Maximization):

AnoGAN—使用生成对抗模型的无监督异常检测引导标记的发现(Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery):

ArtGAN—ArtGAN: 使用条件范畴生成对抗网络合成艺术作品(ArtGAN: Artwork Synthesis with Conditional Categorial GANs):https://arxiv.org/abs/1702.03410

b-GAN—b-GAN: 生成对抗网络的统一架构(b-GAN: Unified Framework of Generative Adversarial Networks):https://openreview.net/pdf?id=S1JG13oee

Bayesian GAN—深度分层隐式模型(Deep and Hierarchical Implicit Models):https://arxiv.org/abs/1702.08896

BEGAN—BEGAN:边界均衡生成对抗网络(BEGAN:Boundary Equilibrium Generative Adversarial Networks):

BiGAN—对抗性特征学习(Adversarial Feature Learning):

BS-GAN—边界查找生成对抗网络(Boundary-Seeking Generative Adversarial Networks):

CGAN—通过条件生成对抗网络实现多样而自然的图像描述(Towards Diverse and Natural Image Deions via a Conditional GAN):

CCGAN—语境条件性生成对抗网络的半监督学习(Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks):https://arxiv.org/abs/1611.06430v1

CatGAN—类属生成对抗网络的无监督和半监督学习(Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks):

CoGAN—共轭生成对抗网络(Coupled Generative Adversarial Networks):

Context-RNN-GAN—用于抽象推导图表生成的语境性 RNN-GAN(Contextual RNN-GANs for Abstract Reasoning Diagram Generation):https://arxiv.org/abs/1609.09444

C-RNN-GAN—C-RNN-GAN:对抗训练的连续性循环神经网络(C-RNN-GAN: Continuous recurrent neural networks with adversarial training):https://arxiv.org/abs/1611.09904

CVAE-GAN—CVAE-GAN: 通过非对称训练生成细密纹路的图像(Fine-Grained Image Generation through Asymmetric Training):https://arxiv.org/abs/1703.10155

CycleGAN—使用循环一致性对抗网络进行非成对图到图翻译(Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks):https://arxiv.org/abs/1703.10593

DTN—无监督跨领域图像生成(Unsupervised Cross-Domain Image Generation):https://arxiv.org/abs/1611.02200

DCGAN—使用深度卷积生成对抗网络进行无监督表征学习(Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks):https://arxiv.org/abs/1511.06434

DiscoGAN—使用生成对抗网络学习发现跨领域关系(Learning to Discover Cross-Domain Relations with Generative Adversarial Networks):

DualGAN—DualGAN: 图到图翻译的无监督对偶学习(Unsupervised Dual Learning for Image-to-Image Translation):

EBGAN—基于能量的生成对抗网络(Energy-based Generative Adversarial Network):

(责任编辑:本港台直播)

顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容