本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

报码:资源 | 如何开启深度学习之旅?这三大类125篇论文为你导航(附资源下载)(5)

时间:2017-03-06 18:28来源:本港台直播 作者:www.wzatv.cc 点击:
[3] Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning. 基于注意力的神经机器翻译的有效途径(Effective approaches to attention-based neural machine translation.) [4] Chung, et

[3] Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning. 基于注意力的神经机器翻译的有效途径(Effective approaches to attention-based neural machine translation.)

[4] Chung, et al. 一个机器翻译无显式分割的字符级解码器(A Character-Level Decoder without Explicit Segmentation for Neural Machine Translation)

[5] Lee, et al. 无显式分割的全字符级神经机器翻译(Fully Character-Level Neural Machine Translation without Explicit Segmentation)

[6] Wu, Schuster, Chen, Le, et al. 谷歌的神经机器翻译系统:弥合人与机器翻译的鸿沟(Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation)

3.6 机器人

[1] Koutník, Jan, et al. 发展用于视觉强化学习的大规模神经网络(Evolving large-scale neural networks for vision-based reinforcement learning.)

[2] Levine, Sergey, et al. 深度视觉眼肌运动策略的端到端训练(End-to-end training of deep visuomotor policies.)

[3] Pinto, Lerrel, and Abhinav Gupta. 超大尺度自我监督:从 5 万次尝试和 700 机器人小时中学习抓取(Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours.)

[4] Levine, Sergey, et al. 学习手眼协作用于机器人掌握深度学习和大数据搜集(Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection.)

[5] Zhu, Yuke, et al. 使用深度强化学习视觉导航目标驱动的室内场景(Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning.)

[6] Yahya, Ali, et al. 使用分布式异步引导策略搜索进行集体机器人增强学习(Collective Robot Reinforcement Learning with Distributed Asynchronous Guided Policy Search.)

[7] Gu, Shixiang, et al. 深度强化学习用于机器操控(Deep Reinforcement Learning for Robotic Manipulation.)

[8] A Rusu, M Vecerik, Thomas Rothörl, N Heess, R Pascanu, R Hadsell. 模拟实机机器人使用过程网从像素中学习(Sim-to-Real Robot Learning from Pixels with Progressive Nets.)

[9] Mirowski, Piotr, et al. 学习在复杂环境中导航(Learning to navigate in complex environments.)

3.7 艺术

[1] Mordvintsev, Alexander; Olah, Christopher; Tyka, Mike (2015). 初始主义:神经网络的更深层(Inceptionism: Going Deeper into Neural Networks)(谷歌 Deep Dream)

[2] Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. 一个艺术风格的神经算法(A neural algorithm of artistic style.) (杰出的工作,目前最成功的算法)

[3] Zhu, Jun-Yan, et al. 自然图像流形上的生成视觉操纵(Generative Visual Manipulation on the Natural Image Manifold.)

[4] Champandard, Alex J. Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artworks. (神经涂鸦)

[5] Zhang, Richard, Phillip Isola, and Alexei A. Efros. 多彩的图像彩色化(Colorful Image Colorization.)

[6] Johnson, Justin, Alexandre Alahi, and Li Fei-Fei. 实时风格迁移和超分辨率的感知损失(Perceptual losses for real-time style transfer and super-resolution.)

[7] Vincent Dumoulin, Jonathon Shlens and Manjunath Kudlur. 一个艺术风格的学习表征(A learned representation for artistic style.)

[8] Gatys, Leon and Ecker, et al. 神经风格迁移中的控制感知因子(Controlling Perceptual Factors in Neural Style Transfer.) (控制空间定位、色彩信息和全空间尺度方面的风格迁移)

[9] Ulyanov, Dmitry and Lebedev, Vadim, et al. 纹理网络:纹理和风格化图像的前馈合成(Texture Networks: Feed-forward Synthesis of Textures and Stylized Images.) (纹理生成和风格迁移)

3.8 对象分割

[1] J. Long, E. Shelhamer, and T. Darrell, 用于语义分割的全卷积网络(Fully convolutional networks for semantic segmentation)

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容