[16] Ioffe, Sergey, and Christian Szegedy. Batch normalization:通过减少内部协变量加速深度网络训练(Batch normalization: Accelerating deep network training by reducing internal covariate shift)(2015 年一篇杰出论文) [17] Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton.层归一化(Layer normalization)(批归一化的升级版) [18] Courbariaux, Matthieu, et al. 二值神经网络:训练神经网络的权重和激活约束到正 1 或者负 1(Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to+ 1 or?1)(新模型,快) [19] Jaderberg, Max, et al. 使用合成梯度的解耦神经接口(Decoupled neural interfaces using synthetic gradients)(训练方法的发明,令人惊叹的文章) [20] Chen, Tianqi, Ian Goodfellow, and Jonathon Shlens. Net2net:通过知识迁移加速学习(Net2net: Accelerating learning via knowledge transfer) (修改之前的训练网络以减少训练) [21] Wei, Tao, et al. 网络形态(Network Morphism)(修改之前的训练网络以减少训练 epoch) 2.2 优化 [22] Sutskever, Ilya, et al. 有关深度学习中初始化与动量因子的研究(On the importance of initialization and momentum in deep learning) (动量因子优化器) [23] Kingma, Diederik, and Jimmy Ba. Adam:随机优化的一种方法(Adam: A method for stochastic optimization)(可能是现在用的最多的一种方法) [24] Andrychowicz, Marcin, et al. 通过梯度下降学习梯度下降(Learning to learn by gradient descent by gradient descent) (神经优化器,令人称奇的工作) [25] Han, Song, Huizi Mao, and William J. Dally. 深度压缩:通过剪枝、量子化训练和霍夫曼代码压缩深度神经网络(Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding) (ICLR 最佳论文,来自 DeePhi 科技初创公司,加速 NN 运行的新方向) [26] Iandola, Forrest N., et al. SqueezeNet:带有 50x 更少参数和小于 1MB 模型大小的 AlexNet-层级精确度(SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model size.) (优化 NN 的另一个新方向,来自 DeePhi 科技初创公司) 2.3 无监督学习/深度生成模型 [27] Le, Quoc V. 通过大规模无监督学习构建高级特征(Building high-level features using large scale unsupervised learning.) (里程碑,吴恩达,谷歌大脑,猫) [28] Kingma, Diederik P., and Max Welling. 自动编码变异贝叶斯(Auto-encoding variational bayes.) (VAE) [29] Goodfellow, Ian, et al. 生成对抗网络(Generative adversarial nets.)(GAN, 超酷的想法) [30] Radford, Alec, Luke Metz, and Soumith Chintala. 带有深度卷曲生成对抗网络的无监督特征学习(Unsupervised representation learning with deep convolutional generative adversarial networks.)(DCGAN) [31] Gregor, Karol, et al. DRAW:一个用于图像生成的循环神经网络(DRAW: A recurrent neural network for image generation.) (值得注意的 VAE,杰出的工作) [32] Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. 像素循环神经网络(Pixel recurrent neural networks.)(像素 RNN) [33] Oord, Aaron van den, et al. 使用像素 CNN 解码器有条件地生成图像(Conditional image generation with PixelCNN decoders.) (像素 CNN) 2.4 RNN/序列到序列模型 [34] Graves, Alex. 带有循环神经网络的生成序列(Generating sequences with recurrent neural networks.)(LSTM, 非常好的生成结果,展示了 RNN 的力量) [35] Cho, Kyunghyun, et al. 使用 RNN 编码器-解码器学习词组表征用于统计机器翻译(Learning phrase representations using RNN encoder-decoder for statistical machine translation.) (第一个序列到序列论文) [36] Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. 运用神经网路的序列到序列学习(Sequence to sequence learning with neural networks.」)(杰出的工作) [37] Bahdanau, Dzmitry, KyungHyun Cho, and Yoshua Bengio. 通过共同学习来匹配和翻译神经机器翻译(Neural Machine Translation by Jointly Learning to Align and Translate.) [38] Vinyals, Oriol, and Quoc Le. 一个神经对话模型(A neural conversational model.)(聊天机器人上的序列到序列) 2.5 神经图灵机 [39] Graves, Alex, Greg Wayne, and Ivo Danihelka. 神经图灵机器(Neural turing machines.)arXiv preprint arXiv:1410.5401 (2014). (未来计算机的基本原型) [40] Zaremba, Wojciech, and Ilya Sutskever. 强化学习神经图灵机(Reinforcement learning neural Turing machines.) [41] Weston, Jason, Sumit Chopra, and Antoine Bordes. 记忆网络(Memory networks.) [42] Sukhbaatar, Sainbayar, Jason Weston, and Rob Fergus. 端到端记忆网络(End-to-end memory networks.) [43] Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. 指示器网络(Pointer networks.) (责任编辑:本港台直播) |