[44] Graves, Alex, et al. 使用带有动力外部内存的神经网络的混合计算(Hybrid computing using a neural network with dynamic external memory.)(里程碑,结合上述论文的思想) 2.6 深度强化学习 [45] Mnih, Volodymyr, et al. 使用深度强化学习玩 atari 游戏(Playing atari with deep reinforcement learning.) (第一篇以深度强化学习命名的论文) [46] Mnih, Volodymyr, et al. 通过深度强化学习达到人类水准的控制(Human-level control through deep reinforcement learning.) (里程碑) [47] Wang, Ziyu, Nando de Freitas, and Marc Lanctot. 用于深度强化学习的决斗网络架构(Dueling network architectures for deep reinforcement learning.) (ICLR 最佳论文,伟大的想法 ) [48] Mnih, Volodymyr, et al. 用于深度强化学习的异步方法(Asynchronous methods for deep reinforcement learning.) (当前最先进的方法) [49] Lillicrap, Timothy P., et al. 运用深度强化学习进行持续控制(Continuous control with deep reinforcement learning.) (DDPG) [50] Gu, Shixiang, et al. 带有模型加速的持续深层 Q-学习(Continuous Deep Q-Learning with Model-based Acceleration.) [51] Schulman, John, et al. 信赖域策略优化(Trust region policy optimization.) (TRPO) [52] Silver, David, et al. 使用深度神经网络和树搜索掌握围棋游戏(Mastering the game of Go with deep neural networks and tree search.) (阿尔法狗) 2.7 深度迁移学习/终身学习/尤其对于 RL [53] Bengio, Yoshua. 表征无监督和迁移学习的深度学习(Deep Learning of Representations for Unsupervised and Transfer Learning.) (一个教程) [54] Silver, Daniel L., Qiang Yang, and Lianghao Li. 终身机器学习系统:超越学习算法(Lifelong Machine Learning Systems: Beyond Learning Algorithms.) (一个关于终生学习的简要讨论) [55] Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. 提取神经网络中的知识(Distilling the knowledge in a neural network.) (教父的工作) [56] Rusu, Andrei A., et al. 策略提取(Policy distillation.) (RL 领域) [57] Parisotto, Emilio, Jimmy Lei Ba, and Ruslan Salakhutdinov. 演员模仿:深度多任务和迁移强化学习(Actor-mimic: Deep multitask and transfer reinforcement learning.) (RL 领域) [58] Rusu, Andrei A., et al. 渐进神经网络(Progressive neural networks.)(杰出的工作,一项全新的工作) 2.8 一次性深度学习 [59] Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum. 通过概率程序归纳达到人类水准的概念学习(Human-level concept learning through probabilistic program induction.)(不是深度学习,但是值得阅读) [60] Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. 用于一次图像识别的孪生神经网络(Siamese Neural Networks for One-shot Image Recognition.) [61] Santoro, Adam, et al. 用记忆增强神经网络进行一次性学习(One-shot Learning with Memory-Augmented Neural Networks ) (一个一次性学习的基本步骤) [62] Vinyals, Oriol, et al. 用于一次性学习的匹配网络(Matching Networks for One Shot Learning.) [63] Hariharan, Bharath, and Ross Girshick. 少量视觉物体识别(Low-shot visual object recognition.)(走向大数据的一步) 3 应用 3.1 NLP(自然语言处理) [1] Antoine Bordes, et al. 开放文本语义分析的词和意义表征的联合学习(Joint Learning of Words and Meaning Representations for Open-Text Semantic Parsing.) [2] Mikolov, et al. 词和短语及其组合性的分布式表征(Distributed representations of words and phrases and their compositionality.) (word2vec) [3] Sutskever, et al. 运用神经网络的序列到序列学习(Sequence to sequence learning with neural networks.) [4] Ankit Kumar, et al. 问我一切:动态记忆网络用于自然语言处理(Ask Me Anything: Dynamic Memory Networks for Natural Language Processing.) [5] Yoon Kim, et al. 角色意识的神经语言模型(Character-Aware Neural Language Models.) [6] Jason Weston, et al. 走向人工智能-完成问题回答:一组前提玩具任务(Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks.) (bAbI 任务) [7] Karl Moritz Hermann, et al. 教机器阅读和理解(Teaching Machines to Read and Comprehend.)(CNN/每日邮件完形风格问题) (责任编辑:本港台直播) |