[8] Alexis Conneau, et al. 非常深度卷曲网络用于自然语言处理(Very Deep Convolutional Networks for Natural Language Processing.) (在文本分类中当前最好的) [9] Armand Joulin, et al. 诡计包用于有效文本分类(Bag of Tricks for Efficient Text Classification.)(比最好的差一点,直播,但快很多) 3.2 目标检测 [1] Szegedy, Christian, Alexander Toshev, and Dumitru Erhan. 深度神经网路用于目标检测(Deep neural networks for object detection.) [2] Girshick, Ross, et al. 富特征层级用于精确目标检测和语义分割(Rich feature hierarchies for accurate object detection and semantic segmentation.)(RCNN) [3] He, Kaiming, et al. 深度卷曲网络的空间金字塔池用于视觉识别(Spatial pyramid pooling in deep convolutional networks for visual recognition.) (SPPNet) [4] Girshick, Ross. 快速的循环卷曲神经网络(Fast r-cnn.) [5] Ren, Shaoqing, et al. 更快的循环卷曲神经网络:通过区域建议网络趋向实时目标检测(Faster R-CNN: Towards real-time object detection with region proposal networks.) [6] Redmon, Joseph, et al. 你只看到一次:统一实时的目标检测(You only look once: Unified, real-time object detection.) (YOLO, 杰出的工作,真的很实用) [7] Liu, Wei, et al. SSD:一次性多盒探测器(SSD: Single Shot MultiBox Detector.) 3.3 视觉跟踪 [1] Wang, Naiyan, and Dit-Yan Yeung. 学习视觉跟踪用的一种深度压缩图象表示(Learning a deep compact image representation for visual tracking.) (第一篇使用深度学习进行视觉跟踪的论文,DLT 跟踪器) [2] Wang, Naiyan, et al. 为稳定的视觉跟踪传输丰富特征层次(Transferring rich feature hierarchies for robust visual tracking.)(SO-DLT) [3] Wang, Lijun, et al. 用全卷积网络进行视觉跟踪(Visual tracking with fully convolutional networks.) (FCNT) [4] Held, David, Sebastian Thrun, and Silvio Savarese. 用深度回归网络以 100FPS 速度跟踪(Learning to Track at 100 FPS with Deep Regression Networks.) (GOTURN, 作为一个深度神经网络,其速度非常快,但是相较于非深度学习方法还是慢了很多) [5] Bertinetto, Luca, et al. 对象跟踪的全卷积 Siamese 网络(Fully-Convolutional Siamese Networks for Object Tracking.) (SiameseFC, 实时对象追踪的最先进技术) [6] Martin Danelljan, Andreas Robinson, Fahad Khan, Michael Felsberg. 超越相关滤波器:学习连续卷积算子的视觉追踪(Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking.)(C-COT) [7] Nam, Hyeonseob, Mooyeol Baek, and Bohyung Han. 在视觉跟踪的树结构中传递卷积神经网络与建模(Modeling and Propagating CNNs in a Tree Structure for Visual Tracking.)(VOT2016 Winner,TCNN) 3.4 图像说明 [1] Farhadi,Ali,etal. 每幅图都讲述了一个故事:从图像中生成句子(Every picture tells a story: Generating sentences from images.) [2] Kulkarni, Girish, et al. 儿语:理解并生成图像的描述(talk: Understanding and generating image deions.) [3] Vinyals, Oriol, et al. 展示与表达:一个神经图像字幕生成器(Show and tell: A neural image caption generator) [4] Donahue, Jeff, et al. 视觉认知和描述的长期递归卷积网络(Long-term recurrent convolutional networks for visual recognition and deion) [5] Karpathy, Andrej, and Li Fei-Fei. 产生图像描述的深层视觉语义对齐(Deep visual-semantic alignments for generating image deions) [6] Karpathy, Andrej, Armand Joulin, and Fei Fei F. Li. 双向图像句映射的深片段嵌入(Deep fragment embeddings for bidirectional image sentence mapping) [7] Fang, Hao, et al. 从字幕到视觉概念,从视觉概念到字幕(From captions to visual concepts and back) [8] Chen, Xinlei, and C. Lawrence Zitnick. 图像字幕生成的递归视觉表征学习「Learning a recurrent visual representation for image caption generation [9] Mao, Junhua, et al. 使用多模型递归神经网络(m-rnn)的深度字幕生成(Deep captioning with multimodal recurrent neural networks (m-rnn).) [10] Xu, Kelvin, et al. 展示、参与与表达:视觉注意的神经图像字幕生成(Show, attend and tell: Neural image caption generation with visual attention.) 3.5 机器翻译 一些里程碑式的论文在 RNN 序列到序列的主题分类下被列举。 [1] Luong, Minh-Thang, et al. 神经机器翻译中生僻词问题的处理(Addressing the rare word problem in neural machine translation.) [2] Sennrich, et al. 带有子词单元的生僻字神经机器翻译(Neural Machine Translation of Rare Words with Subword Units) (责任编辑:本港台直播) |