本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

报码:资源 | 如何开启深度学习之旅?这三大类125篇论文为你导航(附资源下载)(4)

时间:2017-03-06 18:28来源:本港台直播 作者:www.wzatv.cc 点击:
[8] Alexis Conneau, et al. 非常深度卷曲网络用于自然语言处理(Very Deep Convolutional Networks for Natural Language Processing.) (在文本分类中当前最好的) [9] Armand Joulin

[8] Alexis Conneau, et al. 非常深度卷曲网络用于自然语言处理(Very Deep Convolutional Networks for Natural Language Processing.) (在文本分类中当前最好的)

[9] Armand Joulin, et al. 诡计包用于有效文本分类(Bag of Tricks for Efficient Text Classification.)(比最好的差一点,直播,但快很多)

3.2 目标检测

[1] Szegedy, Christian, Alexander Toshev, and Dumitru Erhan. 深度神经网路用于目标检测(Deep neural networks for object detection.)

[2] Girshick, Ross, et al. 富特征层级用于精确目标检测和语义分割(Rich feature hierarchies for accurate object detection and semantic segmentation.)(RCNN)

[3] He, Kaiming, et al. 深度卷曲网络的空间金字塔池用于视觉识别(Spatial pyramid pooling in deep convolutional networks for visual recognition.) (SPPNet)

[4] Girshick, Ross. 快速的循环卷曲神经网络(Fast r-cnn.)

[5] Ren, Shaoqing, et al. 更快的循环卷曲神经网络:通过区域建议网络趋向实时目标检测(Faster R-CNN: Towards real-time object detection with region proposal networks.)

[6] Redmon, Joseph, et al. 你只看到一次:统一实时的目标检测(You only look once: Unified, real-time object detection.) (YOLO, 杰出的工作,真的很实用)

[7] Liu, Wei, et al. SSD:一次性多盒探测器(SSD: Single Shot MultiBox Detector.)

3.3 视觉跟踪

[1] Wang, Naiyan, and Dit-Yan Yeung. 学习视觉跟踪用的一种深度压缩图象表示(Learning a deep compact image representation for visual tracking.) (第一篇使用深度学习进行视觉跟踪的论文,DLT 跟踪器)

[2] Wang, Naiyan, et al. 稳定的视觉跟踪传输丰富特征层次(Transferring rich feature hierarchies for robust visual tracking.)(SO-DLT)

[3] Wang, Lijun, et al. 用全卷积网络进行视觉跟踪(Visual tracking with fully convolutional networks.) (FCNT)

[4] Held, David, Sebastian Thrun, and Silvio Savarese. 用深度回归网络以 100FPS 速度跟踪(Learning to Track at 100 FPS with Deep Regression Networks.) (GOTURN, 作一个深度神经网络,其速度非常快,但是相较于非深度学习方法还是慢了很多)

[5] Bertinetto, Luca, et al. 对象跟踪的全卷积 Siamese 网络(Fully-Convolutional Siamese Networks for Object Tracking.) (SiameseFC, 实时对象追踪的最先进技术)

[6] Martin Danelljan, Andreas Robinson, Fahad Khan, Michael Felsberg. 超越相关滤波器:学习连续卷积算子的视觉追踪(Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking.)(C-COT)

[7] Nam, Hyeonseob, Mooyeol Baek, and Bohyung Han. 在视觉跟踪的树结构中传递卷积神经网络与建模(Modeling and Propagating CNNs in a Tree Structure for Visual Tracking.)(VOT2016 Winner,TCNN)

3.4 图像说明

[1] Farhadi,Ali,etal. 每幅图都讲述了一个故事:从图像中生成句子(Every picture tells a story: Generating sentences from images.)

[2] Kulkarni, Girish, et al. 儿语:理解并生成图像的描述(talk: Understanding and generating image deions.)

[3] Vinyals, Oriol, et al. 展示与表达:一个神经图像字幕生成器(Show and tell: A neural image caption generator)

[4] Donahue, Jeff, et al. 视觉认知和描述的长期递归卷积网络(Long-term recurrent convolutional networks for visual recognition and deion)

[5] Karpathy, Andrej, and Li Fei-Fei. 产生图像描述的深层视觉语义对齐(Deep visual-semantic alignments for generating image deions)

[6] Karpathy, Andrej, Armand Joulin, and Fei Fei F. Li. 双向图像句映射的深片段嵌入(Deep fragment embeddings for bidirectional image sentence mapping)

[7] Fang, Hao, et al. 从字幕到视觉概念,从视觉概念到字幕(From captions to visual concepts and back)

[8] Chen, Xinlei, and C. Lawrence Zitnick. 图像字幕生成的递归视觉表征学习「Learning a recurrent visual representation for image caption generation

[9] Mao, Junhua, et al. 使用多模型递归神经网络(m-rnn)的深度字幕生成(Deep captioning with multimodal recurrent neural networks (m-rnn).)

[10] Xu, Kelvin, et al. 展示、参与与表达:视觉注意的神经图像字幕生成(Show, attend and tell: Neural image caption generation with visual attention.)

3.5 机器翻译

一些里程碑式的论文在 RNN 序列到序列的主题分类下被列举。

[1] Luong, Minh-Thang, et al. 神经机器翻译中生僻词问题的处理(Addressing the rare word problem in neural machine translation.)

[2] Sennrich, et al. 带有子词单元的生僻字神经机器翻译(Neural Machine Translation of Rare Words with Subword Units)

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容