本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

【j2开奖】Nature | 走向实用化:谷歌量子计算的三大商业前景

时间:2017-03-06 18:25来源:本港台直播 作者:118开奖 点击:
参与:李泽南、黄小天、蒋思源 谷歌量子人工智能实验室的 Masoud Mohseni、Peter Read、Hartmut Neven 及其同事规划了通向终极量子机器的投资蓝图。 谷歌的低温恒温器在 10mK 温度下运行量子

参与:李泽南、黄小天、蒋思源

谷歌量子人工智能实验室的 Masoud Mohseni、Peter Read、Hartmut Neven 及其同事规划了通向终极量子机器的投资蓝图。

  

【j2开奖】Nature | 走向实用化:谷歌量子计算的三大商业前景

谷歌的低温恒温器在 10mK 温度下运行量子处理器

从量子纠缠到与大分子化学反应,无法使用传统二进制计算机有效描述的世界特征有很多。解决这一难题的办法,正如物理学家 Richard Feynman 在 30 年前意识到的,就是使用量子处理器,这种处理器同时混合了传统状态,恰如物质所做的那样。然而,这样的量子机器投入使用前需要克服很多技术障碍,其中包括误差控制以及根据编信息的量子状态运行保真度的提升。

人类正在打造终极量子计算机:一个可以容忍误差和错误,解决一切问题的量子计算机。理论上讲,这样一台由很多量子比特组成的大型处理器为核心的机器要比普通计算机更快,计算能力至少领先 10 年。纠正错误需要冗余,量子比特的数量需要大幅度扩展。例如,1 天时间内对 2000 位数进行因式分解是经典计算机难以胜任的,而这也需要 1 亿个量子比特进行计算,而且这是在每 100,000 个操作中只有 1 个量子位出错的前提下。目前,我们还没有组装出具有数十个量子位的量子处理器的能力。

关于量子计算的保守观点使得投资者认为这项技术只能在远期获得回报。但我们认为,如果这个小装置在未来 5 年内出现,短期回报也不无可能,即使它们无法纠正全部错误。

理论保证的缺乏并不妨碍成功。结合了量子和经典方法的启发式混合方法可以支撑强大的未来应用。神经网络在机器学习方面的最近成功就是一个很好的例证。在上世纪 90 年代,训练深度神经网络的计算机还不存在,有着强大理论基础的 convex 方法(以带有清晰最小化解决方案的函数为基础)在这一领域甚是流行。今天,这些方法并不适用于深度学习。神经网路的基础算法很难改变,但是,多亏了摩尔定律,我们取得了一些令人称奇的里程碑式的新成果。

相似地,尽管今天没有证据表明非完美量子机器可以计算的足够快以解决实际问题,但情况也许在改变。模拟和数字量子硬件的规模、保真度和可控性正在稳步提升。我们预测在几年内,基于 CMOS(互补金属氧化物半导体,complementary metal oxide–semiconductor)技术的可控量子系统执行特定任务的速度就会超过传统计算机。

今天关于早期量子计算装置,我们提出了三个可行的业化应用:量子模拟、量子辅助优化和量子采样。这些领域内的更快计算速度将在人工智能、金融和医疗方面形成业化优势。

量子计算机的发展不仅需要多学科互动,直播,而且需要学界和业界紧密配合。制造足够可靠、可控、商业化的装置需要硬件水平的提升。解决现今硬件限制的实际问题需要启发式量子算法。

三大商业前景

如果一些可行的技术进步成为现实,新兴的量子处理器将有可能胜任以下几类任务,并在未来几年内具有商业价值:

量子模拟。对化学反应和材料进行建模是量子计算最有可能的一个应用。研究者可以在计算机中研究数百万的候选而不用再花费数年,投入数亿的美元制造和定性少量材料。不管目标是用于飞机的更强的高分子材料,用于汽车的更有效的触媒转换器,用于太阳能电池的更好材料,更好的医学品还是更透气的纤维,更快的发现途径将会带来巨大价值。

计算材料发现已经是一个很大的产业。量子计算将为它带来根本的转变:从质量和描述到数量和预测。化学反应率对分子能量极其敏感,且横跨的范围已超出经典计算机的处理能力。如果稳健的算法成为现实,或许无需充分的量子错误纠正就可以完成材料模拟的任务。例如,已知的算法(例如量子力学变分计算的方法)有可能不需要量子位错误控制。

很多种商业模型可以提供量子模拟器。实验室可以允许付费访问。计算机公司可以充当顾问。一些企业也许会交换股权,以换取量子辅助的突破并带来创新材料的发展。

量子辅助(Quantum-assisted)优化。在物理、社会科学和各行业所有涉及量化计算的学科中,最核心也是最困难的计算任务就是优化。这些优化问题很难用常规计算机解决。因为算法只能缓慢地遍历所有数学上可能的解决方案,而优良的解决方案可能隐藏在难以克服的计算障碍之后。最常见经典的算法就是使用统计学方法(如热能分布/thermal energy distributions)来「越」过这些障碍。我们认为这种经典类型的采样(classical sampling)能通过引入量子现象的偶发性(如量子隧道,穿过障碍传递量子信息)达到加强的效果,从而找到也许很少见但十分高质量的解决方案。

  

【j2开奖】Nature | 走向实用化:谷歌量子计算的三大商业前景

这些芯片只有 6x6mm 的尺寸,j2直播,控制 6 个量子比特

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容