本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

报码:十个生成模型(GANs)的最佳案例和原理

时间:2017-08-15 00:28来源:118论坛 作者:本港台直播 点击:
十个生成模型(GANs)的最佳案例和原理 | 代码+论文 2017-08-14 12:47 来源:量子位 视频/谷歌/程序设计 原标题:十个生成模型(GANs)的最佳案例和原理 | 代码+论文 王小新 编译 原文作者:Sum

十个生成模型(GANs)的最佳案例原理 | 代+论文

2017-08-14 12:47 来源:量子位 视频 /谷歌 /程序设计

原标题:十个生成模型(GANs)的最佳案例原理 | 代+论文

王小新 编译

原文作者:Sumeet Agrawal

生成对抗网络(GANs)是一种能“教会”计算机胜任人类工作的有趣方法。一个好的对手能让你成长更快,而GANs背后就是“从竞争中学习”的思路。

GANs最先是由蒙特利尔大学的Ian Goodfellow提出,已在图像生成和风格迁移等领域获得了巨大的成功,充分展示了“无监督学习”技术的潜力。

GANs是如何工作的?

报码:十个生成模型(GANs)的最佳案例和原理

GAN结构示意图

一个GAN中包含两个相互竞争的神经网络模型。一个网络称为生成器(generator),能将噪声作为输入并生成样本;另一个网络称为鉴别器(discriminator),能接收生成器数据和真实训练数据,训练得到能正确区分数据类型的分类器。

这两个网络互相对抗。其中,生成器通过学习来产生更逼近真实数据的新样本,用于愚弄鉴别器,反之鉴别器也需要更好地区分生成数据与真实数据。

将这两个网络联合训练,经过大量回合“交锋”后,鉴别器将无法区分生成样本和实际数据。做个比喻,生成器就像是想制作一些高仿品的生产商,而鉴别器就像是试图检测出这些仿制品的警察。

由于整个过程是自动完成的,仅受限于实际的计算能力,因此GANs可用来实现一些很有趣的功能。

以下是一些用GANs完成的酷炫应用。

1、让机器拥有想象力

神经网络对于物体的本质是怎么“想”的?

为了搞懂这个问题,谷歌大脑的研究人员使用GAN,atv,让神经网络的“想法”呈现在你的眼前。当然,这些“想法”看起来十分迷幻。

其实这原本是一个图像分类器,而生成的迷幻图片,是故意对图像进行过度处理的副产品。现在这套系统有个单独的名字:“深梦(Deep Dream)”。

报码:十个生成模型(GANs)的最佳案例和原理

Deep Dream模型利用普通照片生成的一张奇幻照片

报码:十个生成模型(GANs)的最佳案例和原理

Deep Dream模型将塔楼、房屋和小鸟等对象融入图像中的效果示例

想要运行Deep Dream模型,你只需要输入一张图像,然后这个模型就开始穷尽所能,寻找被训练识别的目标。在一张完全不相关的图像中,神经网络可能会发现一些与狗、房子、水母等物体的相似之处。

就好像你看到云朵会产生联想一样,Deep Dream模型会放大它找到的相似之处。

举个例子,当你运行这个辨识网络时,它指出某张图是狗的可能性为40%,然后开始修改输入图像,使得这张图为狗的可能性增加到60%。并不断重复这个过程,直到输入图像明显地转化成一张看起来像狗的图像。

按照这种方式,通过将图像逐渐转化为的另一种物体,这个神经网络就把自己的“想象”,展现在你的面前。

谷歌提出的Deep Dream模型将传统的思路(即给定相同输入只产生一种输出的想法),改变为不断修改输入来获取最佳输出。

更多信息

博客:

代码:

https://github.com/google/deepdream

2、能模仿人的智能体

这是通过GANs实现模仿学习。不同于传统的励机制,某些AI研究人员希望针对自主学习智能体,提出一种全新的方法。

他们将实际的示范数据输入到智能体,然后智能体从中学习并尝试模仿相同的动作。

报码:十个生成模型(GANs)的最佳案例和原理

一个小人试图模仿人类来自学跑步

在这个模型中,Jonathan Ho和Stefano Ermon提出了一种模仿学习的新方法。一般来说,强化学习通常需要设计一个衡量智能体运动行为的励机制。但是,在实际中,可能要经历成本昂贵的试错过程,才能得到合理的前进表现。

然而,在模仿学习中,智能体从示范数据(机器人的远程操作或是人类行为)中学习,消除了设计奖励机制的要求。关于强化学习在这方面的最新研究可移步量子位编译过的“DeepMind智能体自学跑酷:略显智障,结果尚好”。

更多信息

博客:

https://blog.openai.com/generative-models/

代码:

https://github.com/openai/imitation

3、指马为斑马

用图像生成图像,这也是生成网络的一个有趣应用。在实验中,研究人员能够更改视频中的动物种类、图片中的季节类型或是其他类似任务。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容