数据建设工作并不是一件简单的事,在做好数据建设是需要讲方法的。 之前有个读者给亮哥留个言,但亮哥无法回答,只有沉默了,想了想,今天还是写一篇文章吧。 读者问: 亮哥你好,看你的书很久了,但是有一个问题困扰了我很久。在做用户数据分析的时候,我们常用的第三方类似Umeng这种统计工具,其相关数据是不互通的,也就是我没办法从用户的活跃数据,反推到这部分用户在功能使用上的情况。 另外多数公司在人力物力上的不足,以及时间成本的影响,都没有条件自建数据统计工具,这种情况下,有没有什么比较好的办法,可以处理这样的矛盾呢? 另外自建数据统计系统,有什么好的建议吗? 1.数据的维度「维度」这两个字,很多人在做数据分析提需求的时候,都会碰到。 但也有很多人写成「纬度」、「围度」,其实亮哥不知道哪个是对的,但是从我的理解来说,「维度」比较合理。 在互联网里工作,对数据这件事情,可以说,任何一个工种,都必须与之打交道,只不过关注的点可能并不一致而已。 对于做市场、PR、公关的同学来说,他们关心的是大而化之的数据,你会发现那些市场品牌宣传稿、公关稿里谈及数据,都很大,譬如: 某产品上线至今,拥有X万/亿注册用户,日活用户超过Y万/亿,平均每5分钟,产品就会被下载一次……每秒钟同步处理Z笔交易…… 诸如此类。 对于做产品的同学来说,他们关心的是用户怎么使用产品,用户从哪些入口进入,在哪些页面或功能点上停留进行使用,多长时间或达成何种目标后离开。 对于做运营的同学来说,他们关心获取一个新用户需要多少钱,atv,自己的活动有没有好看的ROI,自己申请的预算是否带来了预估的效果,下个月的KPI究竟是用户活跃还是转化付费。 所以,如果一家公司里,没有人关心数据,或者说,该关心数据的人不关心数据,或者关心了错误的数据,那就是一场灾难。 数据的维度非常广泛,有时间维度(日、月、年、时、分、秒……),也有动作维度(注册、激活、登录、使用、转化、付费、流失……),还有空间维度(访问时长、页面数……),以及各种率。 对于一家企业来说,想要好好的运营(我说大运营),对于数据的把控是十分重要的,这一点不必多说。 2.做产品最需要知道的一些数据 Web和App,大家关心的点是不一样的。 大多数人会接触的都是非常表层的数据。 譬如说,Web时代,讲究UV、PV、访问页面数、停留时长,这些看起来是很通用的指标;App呢,就讲究注册用户数、活跃用户数、付费用户数,这些看起来也是很通用的指标。 所以,你会发现,Web时代,Google、百度都会提供统计工具,实现方式也很简单,申请个账号,获取一段代码,把代码放到每个页面里,这是最粗的做法;App时代,也有人提供统计工具,友盟啊、诸葛io啊,之类的,有些只要你接入SDK,有些则需要你上线部署。 但是,我说的这些都是很粗的维度。 这些粗颗粒的数据,在粗放式运营时可能很管用,但是它们都只能体现最表层的数据,也就是说,你可以通过数据的走势去判断目前产品的健康程度和成长情况。 但是,一旦数据发生大波动,你想要找到原因,就难了,因为这些宏观数据并不进入微观领域。 你想要了解微观,那么,Web时代,你要会配置路径,所谓路径,就是流量从进入到离开,经过的路线,和打游戏一样,你要植入足够的侦察力量,你才能拿回来一些情报用作监控,或者分析;App时代呢,你需要有自己的数据团队,他们要能够去通过埋点搭建出用户的行为模型,在模型里,可以看到用户的使用情况。 其实就这么简单,因为这些都是基础工作。 而在基础工作中,提出需求和上线解决就很重要,这也就进入了这位读者纠结的部分。 3.如何提出数据需求 这里,亮哥要和你聊聊怎么去提数据需求,以及从哪里去摸出数据需求的线索。 如果今天,开发团队里有一个数据小组,你知道作为运营要如何去提数据需求吗? 第一,你要非常了解业务。 什么是非常了解业务呢?我在训练一个数据专员的时候,会要求他用2周时间,什么事儿都不干,去和每个业务Leader聊天,弄清楚目前涉及到各业务的产品中,整个业务流程是怎样的,用户的使用流程又是怎样的,需要几步动作,最后会反馈什么。然后回来和我说,能说清楚的,进入下一环,说不清楚的,重新去了解,直到能掌握业务的真实情况才算完成。 第二,要基于业务的未来去提埋点需求。 (责任编辑:本港台直播) |