本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

wzatv:【图】理解这25个概念,你的「深度学习」才算入门!

时间:2017-05-23 04:26来源:本港台直播 作者:j2开奖直播 点击:
图:pixabay 「机器人圈」导览:很多人认为深度学习很枯燥,大部分情况是因为对深度学习的学术词语,特别是专有名词很困惑,即便对相关从业者,亦很难深入浅出地解释这些词语的

wzatv:【图】理解这25个概念,你的「深度学习」才算入门!

  图:pixabay

  「机器人圈」导览:很多人认为深度学习很枯燥,大部分情况是因为对深度学习的学术词语,特别是专有名词很困惑,即便对相关从业者,亦很难深入浅出地解释这些词语的含义。本文编译自Analytics Vidhya,相信读过此文的圈友,会对深度学习有个全新的认识,机器人圈希望可以为圈友的深度学习之路起到一些辅助作用。文章略长,时长大约20分钟,请仔细阅读收藏。

  人工智能,深度学习,机器学习—无论你在做什么,如果你对它不是很了解的话—去学习它。否则的话不用三年你就跟不上时代的潮流了。

  ——马克.库班

  马克.库班的这个观点可能听起来很极端——但是它所传达的信息是完全正确的! 我们正处于一场革命的旋涡之中——一场由大数据和计算能力引起的革命。

  只需要一分钟,我们来想象一下,在20世纪初,如果一个人不了解电力,他/她会觉得如何?你会习惯于以某种特定的方式来做事情,日复一日,年复一年,而你周围的一切事情都在发生变化,一件需要很多人才能完成的事情仅依靠一个人和电力就可以轻松搞定,而我们今天正以机器学习和深度学习的方式在经历一场相似的旅程。

  所以,如果你还没有探索或理解深度学习的神奇力量——那你应该从今天就开始进入这一领域。

  谁应该读这篇文章?

  如果你是一个想学习或理解深度学习的人,这篇文章是为你量身定做的。在本文中,我将介绍深度学习中常用的各种术语。

  如果你想知道我为什么要写这篇文章——我之所以在写,是因为我希望你开始你的深度学习之旅,而不会遇到麻烦或是被吓倒。当我第一次开始阅读关于深度学习资料的时候,有几个我听说过的术语,但是当我试图理解它的时候,它却是令人感到很迷惑的。而当我们开始阅读任何有关深度学习的应用程序时,atv直播,总会有很多个单词重复出现。

  在本文中,我为你创建了一个类似于深度学习的字典,你可以在需要使用最常用术语的基本定义时进行参考。我希望在你阅读这篇文章之后,你就不会再受到这些术语的困扰了。

  与主题相关的术语

  为了帮助你了解各种术语,我已经将它们分成3组。如果你正在寻找特定术语,你可以跳到该部分。如果你是这个领域的新手,那我建议你按照我写的顺序来通读它们。

  1.神经网络基础(Basics of Neural Networks)

  ——常用激活函数(Common Activation Functions)

  2.卷积神经网络(Convolutional Neural Networks)

  3.循环神经网络(Recurrent Neural Networks)

  神经网络基础

  1)神经元(Neuron)——就像形成我们大脑基本元素的神经元一样,神经元形成神经网络的基本结构。想象一下,当我们得到新信息时我们该怎么做。当我们获取信息时,我们一般会处理它,然后生成一个输出。类似地,在神经网络的情况下,神经元接收输入,处理它并产生输出,而这个输出被发送到其他神经元用于进一步处理,或者作为最终输出进行输出。

  2)权重(Weights)——当输入进入神经元时,它会乘以一个权重。例如,如果一个神经元有两个输入,则每个输入将具有分配给它的一个关联权重。我们随机初始化权重,并在模型训练过程中更新这些权重。训练后的神经网络对其输入赋予较高的权重,这是它认为与不那么重要的输入相比更为重要的输入。为零的权重则表示特定的特征是微不足道的。

  让我们假设输入为a,并且与其相关联的权重为W1,那么在通过节点之后,输入变为a * W1

  3)偏差(Bias)——除了权重之外,另一个被应用于输入的线性分量被称为偏差。它被加到权重与输入相乘的结果中。基本上添加偏差的目的是来改变权重与输入相乘所得结果的范围的。添加偏差后,结果将看起来像a* W1 +偏差。这是输入变换的最终线性分量。

  4)激活函数(Activation Function)——一旦将线性分量应用于输入,将会需要应用一个非线性函数。这通过将激活函数应用于线性组合来完成。激活函数将输入信号转换为输出信号。应用激活函数后的输出看起来像f(a * W1 + b),其中f()就是激活函数。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容