本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

wzatv:【图】理解这25个概念,你的「深度学习」才算入门!(2)

时间:2017-05-23 04:26来源:本港台直播 作者:j2开奖直播 点击:
在下图中,我们将“n”个输入给定为X1到Xn而与其相应的权重为Wk1到Wkn。我们有一个给定值为bk的偏差。权重首先乘以与其对应的输入,然后与偏差加在一

  在下图中,我们将“n”个输入给定为X1到Xn而与其相应的权重为Wk1到Wkn。我们有一个给定值为bk的偏差。权重首先乘以与其对应的输入,然后与偏差加在一起。而这个值叫做u。

  U =ΣW* X+ b

  激活函数被应用于u,即 f(u),并且我们会从神经元接收最终输出,如yk = f(u)。

  常用的激活函数

  最常用的激活函数就是Sigmoid,ReLU和softmax

  a)Sigmoid——最常用的激活函数之一是Sigmoid,它被定义为:

  来源:维基百科

  Sigmoid变换产生一个值为0到1之间更平滑的范围。我们可能需要观察在输入值略有变化时输出值中发生的变化。光滑的曲线使我们能够做到这一点,因此优于阶跃函数。

  b)ReLU(整流线性单位)——与Sigmoid函数不同的是,最近的网络更喜欢使用ReLu激活函数来处理隐藏层。该函数定义为:

  当X>0时,函数的输出值为X;当X<=0时,输出值为0。函数图如下图所示:

  来源:cs231n

  使用ReLU函数的最主要的好处是对于大于0的所有输入来说,它都有一个不变的导数值。常数导数值有助于网络训练进行得更快。

  c) Softmax——Softmax激活函数通常用于输出层,用于分类问题。它与sigmoid函数是很类似的,唯一的区别就是输出被归一化为总和为1。Sigmoid函数将发挥作用以防我们有一个二进制输出,但是如果我们有一个多类分类问题,softmax函数使为每个类分配值这种操作变得相当简单,而这可以将其解释为概率。

  以这种方式来操作的话,我们很容易看到——假设你正在尝试识别一个可能看起来像8的6。该函数将为每个数字分配值如下。我们可以很容易地看出,最高概率被分配给6,而下一个最高概率分配给8,依此类推……

  5)神经网络(Neural Network)——神经网络构成了深度学习的支柱。神经网络的目标是找到一个未知函数的近似值。它由相互联系的神经元形成。这些神经元具有权重和在网络训练期间根据错误来进行更新的偏差。激活函数将非线性变换置于线性组合,而这个线性组合稍后会生成输出。激活的神经元的组合会给出输出值。

  一个很好的神经网络定义——

  “神经网络由许多相互关联的概念化的人造神经元组成,它们之间传递相互数据,并且具有根据网络”经验“调整的相关权重。神经元具有激活阈值,如果通过其相关权重的组合和传递给他们的数据满足这个阈值的话,其将被解雇;发射神经元的组合导致“学习”。

  6)输入/输出/隐藏层(Input / Output / Hidden Layer)——正如它们名字所代表的那样,输入层是接收输入那一层,本质上是网络的第一层。而输出层是生成输出的那一层,也可以说是网络的最终层。处理层是网络中的隐藏层。这些隐藏层是对传入数据执行特定任务并将其生成的输出传递到下一层的那些层。输入和输出层是我们可见的,而中间层则是隐藏的。

  来源:cs231n

  7)MLP(多层感知器)——单个神经元将无法执行高度复杂的任务。因此,我们使用堆栈的神经元来生成我们所需要的输出。在最简单的网络中,我们将有一个输入层、一个隐藏层和一个输出层。每个层都有多个神经元,并且每个层中的所有神经元都连接到下一层的所有神经元。这些网络也可以被称为完全连接的网络。

  8)正向传播(Forward Propagation)——正向传播是指输入通过隐藏层到输出层的运动。在正向传播中,信息沿着一个单一方向前进。输入层将输入提供给隐藏层,然后生成输出。这过程中是没有反向运动的。

  9)成本函数(Cost Function)——当我们建立一个网络时,网络试图将输出预测得尽可能靠近实际值。我们使用成本/损失函数来衡量网络的准确性。而成本或损失函数会在发生错误时尝试惩罚网络。

  我们在运行网络时的目标是提高我们的预测精度并减少误差,从而最大限度地降低成本。最优化的输出是那些成本或损失函数值最小的输出。

  如果我将成本函数定义为均方误差,则可以写为:

  C= 1/m ∑(y–a)^2,

  其中m是训练输入的数量,a是预测值,y是该特定示例的实际值。

  学习过程围绕最小化成本来进行。

  10)梯度下降(Gradient Descent)——梯度下降是一种最小化成本的优化算法。要直观地想一想,在爬山的时候,你应该会采取小步骤,一步一步走下来,而不是一下子跳下来。因此,我们所做的就是,如果我们从一个点x开始,我们向下移动一点,即Δh,并将我们的位置更新为x-Δh,并且我们继续保持一致,直到达到底部。考虑最低成本点。

  图:https://www.youtube.com/watch?v=5u4G23_OohI

  在数学上,为了找到函数的局部最小值,我们通常采取与函数梯度的负数成比例的步长。

  你可以通过这篇文章来详细了解梯度下降。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容