在 Google I/O 中,Google 公布了一系列新的硬件、应用和基础研究。自去年提出 AI First 战略,今年的大会上 Google 同样安排了不少与机器学习开发相关的内容,比如《》。 今天是 Google I/O 的最后一天,一场讨论机器学习前沿研究与未来方向的 Session 同样不容错过。谷歌云人工智能与机器学习首席科学家李飞飞将与谷歌云部门主管 Diane Greene 等顶级专家,共同讨论 Alphabet 的机器学习研究与未来。
Dinae Greene 主持了此次对话,其他参与者包括: Françoise Beaufays,谷歌语音识别负责人。 Fernanda Viegas,谷歌高级研究员、计算设计员(computational designer) Daphne Koller, Alphabet 旗下 Calico Labs 的首席计算官(Chief Computing Officer)、Coursera 联合创始人 Dinae Greene:第一个问题想问一下 Daphne 对深度学习革命的看法? Daphne Koller:我认为深度学习变革非常令人振奋,改变了如今生活的许多方面。这一变革来自于许多机器学习研究员想出的算法。在此之前的十至十五年,深度学习经历了非常困难的一段时间来开发模型、动手实践更多想法和更多的先验知识。当时,我们需要考虑模型的具体细节以及它与领域(domain)的关系,因为那时你没有很多的数据,需要用更多的人类直觉替代数据从而构建模型。 随着我们有越来越多的数据,一些领域发展了,比如图像和语音都是很好的例子。我们开始用越来越多的数据替代其中的人类观念作为平衡。但过去十几年的发展为如今的进步铺平了道路,包括方法和运算算法,都是如今深度学习成功的关键。 我们可能认为大数据是所有事的关键,但我认为它是一些特定领域的解决方案,一些领域还只有中级或者少量的数据,atv直播,所以这些领域还需要平衡人类直觉与现在丰富数据领域所想出的模型。 Dinae Greene:李飞飞,你之前负责斯坦福的人工智能实验室,现在又来到谷歌,希望把人工智能带给大众,对于这个转变你有什么看法? 李飞飞: 人工智能大约有 60 年历史,在科学发展历程中属于年轻的学科。在 60 年前,当机器开始进行简单的数学计算时,人们开始认真考虑阿兰·图灵提出的畅想:机器是否可以思考,是否会有一天能够拥有智能?杰出的计算机科学家 Marvin Minsky、John McCarthy 等人(均为 MIT 的学者)共同构建了人工智能作为一个学科的框架。人工智能的研究在几十年的发展中出现了很多新的技术,但一直遵循着先驱们当初的核心想法,探索人工智能思考、社交、说话、交流能力。人工智能已经有了几轮的技术大发展。从逻辑、早期的机器学习,再到今天的深度学习革命。我把这 60 年的发展看做是解决这一领域的基础问题的过程,寻找有潜力完成人工智能任务的分支学科,如机器人、计算机视觉、自然语言理解、语音识别等等。在这个过程中,我们也在不断考量自己前进的速度,试图让机器理解数据,打造新的工具。 在 2010 年左右,统计机器学习工具的成熟、网络与传感器带来的大数据以及高性能计算芯片带领人工智能从积累阶段进入了发展阶段。 人工智能发展阶段意味着人工智能开始对世界产生真正的影响了。现在只是这个新时代的开始,所有行业都会受到人工智能的影响。在 Google Cloud,我们可以看到,随着人工智能、数据和机器学习的发展,世界的格局将产生改变。目前我们在人工智能领域开发的工具和技术只是人工智能的沧海一粟。我们或许不应该对人工智能过份期望,但人工智能必然会在很多方面为我们带来帮助。 Dinae Greene:Françoise 你作为语音识别的前沿研究者,而如今语音识别应用已经非常普遍了,你能介绍下这个变革吗? Françoise Beaufays:我大约 12 年前加入谷歌,团队中有不少人都想用语音识别做出有用而又有趣的东西来。如果你了解语音识别,那你应该知道语音识别已经存在有段时间了,但我们想做一些有趣的东西。但当时挺困难的,因为当时语音的质量不像如今,我们只能从一些有限的产品开始做起,比如识别一个人说的不算难的语音。我们只是想有所推进,但并不是很多。因为我们需要让产品足够成功,人们才会使用我们的应用,我们才有更多的数据训练模型。 (责任编辑:本港台直播) |