我们首次进行基于静止的人脸图像自动推测犯罪性的研究。通过有监督机器学习,我们使用 1856 张真实的人的面部照片建四个分类器(逻辑回归,KNN,SVM,CNN),这些人中有近一半是已被定罪的犯罪者,其余是非犯罪者,我们以民族、性别、年龄和面部表情作为控制要素,让计算机区分犯罪者和非犯罪者。四个分类器都表现良好,为根据脸部特征自动预测犯罪性提供了有效性证据,尽管围绕该主题存在历史性争议。此外,我们发现一些可以预测犯罪性的结构上的区别特征,例如嘴角的弧度、眼内角间宽、以及所谓的鼻唇角角度。这项研究最重要的发现是,犯罪者和非犯罪者的面部照片在表情的多样性方面非常不同。犯罪者的面部表情变化明显大于非犯罪者。由两组照片组成的两个流形看起来是同心的,非犯罪者的流形的跨度较小,表现出正常的规律。换句话说,一般守法公民的面貌与犯罪者的面貌相比具有更大程度上的相似性,也就是说,犯罪分子在面部表情上的差异比普通人更大。 通过机器学习来推断一个人是否是“犯罪分子”? 《使用脸部图像自动推理罪犯》要做的,也是 ChronoNet 类似的事情,除了后者是推测任意照片拍摄的年代,而前者则是根据人脸部图像推测一个人是否有犯罪记录。因此,吴和张在论文中写道,这是首次“为自动根据人脸推理罪犯提供了证据”。 为了说明为什么这种说法有问题,接下来我们将更详细地解说其研究方法和结果。 方法和结果 吴和张的数据集是中国政府颁发的身份证照片,一组含有 1,856 张 80x80 像素的中国男性面孔近照(closely cropped)。这些男性年龄介于 18 至 55 岁之间,图像中没有面部毛发,也没有疤痕或其他明显痕迹。图像中的 730 个人被标记为“罪犯”,或者更确切地说, “……其中 330 人是中国公安部和广东省、江苏省、辽宁省等公安部门公布的犯罪嫌疑人;其他则是由中国一个城市警察部门根据保密协议提供。……在 730 名罪犯中,235 人犯有包括谋杀、强奸、殴打、绑架和抢劫等暴力罪行;其余 536 人被定罪为非法暴力罪行,例如盗窃、欺诈、腐败、伪造和敲诈勒索罪。” 其他 1126 张人脸图像则是: “使用网络爬虫从互联网获取的非犯罪分子头像,覆盖广泛的专业和社会地位,包括服务员、建筑工人、出租车和卡车司机、房地产经纪人、医生、律师和教授;……大约有一半的人拥有大学学位。” 需要特别强调的是,所有这些人脸图像都来自政府颁发的身份证——这些被视为“犯罪分子”的图片不是犯罪现场照片。 吴和张用这些带标签的样本做监督学习。他们训练计算机看一张脸像,并产生一个“是/否”的回答:这个图片上的人属于“罪犯”组还是“非犯罪分子”组?他们使用了4种不同复杂程度的机器学习技术,也就是参数数量多少不同,更复杂的技术具有更多的参数,因此能够学会图像中细微的关系。其中,一个不太复杂的技术使用自定义代码对图像进行预处理,提取特定已知面部特征的位置(如眼睛和嘴角),然后使用较旧(older)的方法学习与这些面部特征位置相关的模式。作者还使用了 AlexNet,其架构与 ChronoNet 类似。AlexNet 是最现代化的模型和参数最多的 CNN 之一,性能也十分强大,分类精度高达近 90%。不过,即使使用较老的方法,论文给出的精度也远高于 75%。 这带来了几个问题,也许第一个就是“这可能是真的吗?”更确切地说, 这些数字是否可信? 机器学习学到的是什么? 这与犯罪行为和刑事判决有什么关系? 可能的假象 要看准确率高达 90% 是个什么概念,我们来对比另外一篇论文。计算机视觉研究人员 Gil Levi 和 Tal Hassner 在一篇精心控制的 2015 年论文中发现,具有相同架构的卷积神经网络(AlexNet)在推测快照中人脸性别[5] 时的准确率只有 86.8%[6]。另外,吴和张在论文中声称基于 CNN 方法的“假阳性”(即将“非罪犯”误识别为“罪犯”的错误率)只超过 6% 一点点。新的研究显示,药物检测一般会在 5% 至 10% 的病例中产生假阳性结果,10% 至 15% 的病例中为假阴性。 (责任编辑:本港台直播) |