先讲拼车,电召车行业做到拼车才是真正的共享化,所以拼车是最终目标。发明拼车的初衷是城市车辆过多与打车难之间的矛盾。在希望车辆总量不增加的前提下,出现了拼车的想法。为了保证用户体验,拼车必须保证满足用户希望什么时间到达目的地的要求。 通过AI找到一辆车接这个人,并且他真正距离最小,这是一个最优的方案。但现在是不是还有别的车,可以满足乘客的到达时间,同时也要征求乘客的拼车意愿?如果可以使乘客的到达时间稍微推迟五分钟,但是可以省五块钱,你愿不愿意?在拼车方案中,保证乘客在规定时间到达,这个是关键的。 通过对车辆距离、预期到达时间与价格之间的动态平衡匹配,最大化满足用户的需求,是一个很困难的问题。这些需求已经超过了人类自己思考可以实现,必须要人工智能后面重新调度。 使用AI技术模拟,把出租车换成一个卡车,把一个人看成货物,上车点是取货地点,乘客下车地点是送货地点。我们把这些应用于顺丰合作,可以在不增加人员的情况把顺丰的吞吐效率提高5%-10%。 实现了当下的优化以后,对未来的优化更加重要。这将涉及到深度学习。 以物流业为例,未来的物流一要看预测,二要看累计最优,三要加时空索引,这三个东西要加在一起。 假设我们把一公里分成很多格子,可以预测未来有多少人进有多少人出,可以预测未来有多少人请求摩拜,有多少人请求滴滴,有多少人订饿了么。我们在贵阳已经开始做这种预测了,在贵阳预测的是每个格子里面有多少出租车进有多少出租车出。能够预测出未来这个地方有多少人请求饿了么的订单。用这种数据来验证我模型的正确性。 做深度学习预测人流、订单量最开始的动机来自于上海市的踩踏事件。踩踏事件发生之后我很痛心地写了一个微博,开奖,我说,这个事情可以通过人工智能做预测提前避免,如果提前两三个小时知道未来有多少人去那个地方,就可以从源头分流,不要等到大家都去了去疏解。如果政府能够提前预测量级,可以提前预备安全措施。 类似的公共需求也适用于北京地铁,商业需求则适用于滴滴、摩拜和饿了么等。 但是预测人流量是一个困难的工作,因为相关因素非常多。同时,时间空间数据不同于文本,空间有距离,有层次,时间有周期性,还有趋势性。 比如说交通容量每天都有变化,我们一定要考虑到时间的周期、趋势、临近性,考虑到空间的远近性,把不同的数据进行融合,以及不同的影响因子在不同层次融合。最后得到好的结果。这个数据在北京的出租车得到印证,在美国的自行车租赁系统得到印证,现在拿摩拜进行印证,效果都比以前的方法好很多。 空气质量预测 微软亚洲研究院曾经用大数据和人工智能的算法预测全国200多个城市的空气质量。 因为空气质量受很多复杂的影响,包括周边的楼房密度,周边的交通拥堵情况,周边的扩散情况,导致整个城市空气质量不均匀。 我们把京津冀、珠三角、长三角城市群数据放在一起,做大尺度的系列预测和分析。有了这个信息之后,你会发现每次空气质量从好变坏过程中,你就知道哪里先变坏,哪里后变坏,知道它的传播过程。政府是明确需要知道非常细的空气质量的数据,甚至要细到宾馆级,因为有的时候我们领导人就住在某个宾馆。 预测未来。我的预测是系列预测,空气质量预测既要看天还要看人,是个很困难的事情。如果你要看细,细到西直门、东直门怎么样?这非常困难。还有空气质量拐点的预测,我们知道当刮大风和下大雨时,空气质量从500瞬间就变成了50,这个拐点的出现对政府来说是极关重要的。 可是,空气质量的拐点为什么那么重要呢?举例说明,政府曾经做了很多措施限流限行,关闭了河北的工厂,以北京为中心画一个圆,把圆里面所有的工厂全关掉,使得我们的空气质量保持在100以下。但如果你知道明天是拐点,明天会下降干嘛去关它?这一个决策就能够帮国家避免上百亿上千亿的损失。 (责任编辑:本港台直播) |