我们是一个在三亚起家的住宿型公司。我们通过数据会发现,在夏天的时候是西南地区的人去三亚比较多;而冬天东北地区的用户会大量的去三亚过冬。因为冬天东北非常冷,有很多老年人在这样的天气里会很不舒服。我们通过用户季节性的分析,发现一些规律。这样的规律对线上线下的活动投放非常有帮助,尤其是在冬天投放线下户外广告的时候,我们会把更多的精力放在北方区域。 我们还做了其他的实践去体现数据分析的价值。比如分析师会去挖掘,这个商圈到底是 300 块钱的房子更好卖,还是 400 块钱的房子更好卖?怀柔区可能两室一厅的房子更好卖,但 CBD 就有可能是一室一厅的房子更好卖,把这些分析的结果去指导销售人员去获取房源,一个量化的结果就是新签房屋的动销率提升了 20 个百分点。 目前我们已经沉淀了300多个报表,有84%的报表在一周之内被打开过,这些报表平均每天被100多个人访问,开奖,每天大概被访问300多次。这样的做法会让 BI 团队的人感到自己非常有价值,而且这么多的报表经常被打开,说明整个公司的数据价值没有被浪费掉,也说明数据驱动业务增长的理念是深入到公司大部分的人心里的。 (三)数据仓库团队 在更大的公司,或者说在 BAT ,数据仓库应该是被放在技术部,而不是 BI 部门。我们为什么要放在 BI 部门呢?因为这样能让分析师知道每一个指标,在数据库里是怎么被算出来的。数据的标准性和严谨性会有很大程度上的提升。 图10:数据仓库的职责 数据仓库的主要4个职能 1、负责整个原始数据的收集和清洗 对任何一个初创型的公司来讲,这个工作都是要花费大量人力的,所以我们选择使用 GrowingIO 的产品,获取实时全量的用户行为数据。 2、负责数据报表的抽取 因为公司的数据结构越来越复杂,数据报表越来越多。让数据仓库团队做一些数据指标的抽取工作,就可以让分析师直接去分析已经抽取过的统计表,大量地节省分析师在原始代码上的精力。 3、负责各个系统之间的数据规整 各个系统都会展示一些数据,但是每个系统展示的数据可能都不太一样。为了解决这个问题,我们会让数据仓库的工程师去做统一数据的输出,务必保证每一个人在每一个平台上看到的数据都是一致的。 4、负责一部分分析的职能 以上 3 个最基础的工作完成之后,数据仓库的人员也会承担一些分析的职能。 (四)市场竞争分析团队 图11:市场竞争 整个互联网公司市场竞争会越来越激烈,涉及到的是企业内部每个细节的竞争。我们在BI 团队设置了一个这样的职能,是因为BI团队对企业内部各个环节的数据都非常的清楚,此时他在研究外部竞争对手的时候,就会非常透彻。而整个企业内部的数据和企业外部的信息,才能组成一个企业数据完整的图谱,这样才能在一个完整的生态中找到企业增长之道。 三、经验和思考 图12:6 个思考 (一)6个经验 以上的分析零散地介绍了数据团队日常的一些案例,以及为什么设置这些职能、这些职能在驱动业务增长的过程中起到什么作用。总结一下,有 6 个经验: 分析师一定要足够地了解业务。对于一个分析师来讲,商业敏感度是第一位的。 分析师一定要主动地梳理业务问题框架,而不是被动地接受业务方提上来的每一个小问题。 (责任编辑:本港台直播) |