对于比较初级的分析师来讲,可能适应这个思维会花一定的时间;但是一个商业敏感度非常高的分析师,可能只需要几分钟就能够完成以上4个步骤并给出客观的分析结论。 接下来我们从一个具体的案例去验证以上的分析逻辑:假设今天我们的订单突然增长50%,为什么? 我们可以通过多维度分析的方式去考察,第一个是城市的维度,第二个是渠道维度。 图7:两个数据分析场景 第一个场景,从城市的维度上看,每个城市大概增长了5%,都是等比的增长。从渠道上看,APP增长了80%左右,但是其它的渠道并没有带来这么多的增长。所以这个时候我们可以得出一个结论,这种数据现象有可能是我们在APP 端投放的启动量导致的增长。 第二个场景,北京这个城市增长的非常多,但是其他城市基本上没什么增长;APP也同样是80%左右的增长。结合这两个图,我们就会得出,有可能是一个北京的 KA 用户,在 APP 下了订单导致的增长。 这两个数据的图形看起来非常的相近,但是得出来的结论很不一样,最后导致的企业的决策也会很不一样。 (二)BI 报表团队 BI 报表团队的 3 个重要职责是,将业务方常规需要查看的数据沉淀为 BI 报表;帮助业务人员实现可视化的自助式数据分析;分析师自己沉淀一些主动分析的数据结果给大家看。 接下来我还是用3个具体的实践案例去讲这个团队在做的事情。 案例1,可视化 图8:可视化数据报表 这个报表说明的是,我们每周在每一个渠道上面的表现。当然我们做的实际报表会比这个更长一些,会看到每一个渠道吸引过来的注册,以及这些注册用户在未来的一段时间内的留存率以及价值转化。 这个报表在每一个公司都非常常见,但是它的核心的目的是什么呢?是让我们的业务人员清楚地知道投放的效果,以此来决定未来的投放资源如何去调整,进而提升投放的 ROI。这个目的需要通过报表的制作以及一些额外的可视化来实现,报表负责展示数据,可视化负责让业务人员花更少的时间去获取数据之上的关键信息:假设我们根据过去的业务情况得出,ROI 低于 10 是不能接受的,做一些简单的可视化工作就能够突显这个信息。 案例2,可视化基础上的自助式分析 在业务线和业务部门越来越多之后,我们希望业务人员能够自主地在报表上完成一些初步的分析。所以这个 BI 报表实际上就是在可视化的基础上,做了更多的自助设计分析。让业务人员能够通过一些拖拉拽的钻取操作,快速的看到问题的所在,找到问题的原因。 这个报表其实是可以支持下钻的,如果某个渠道的 ROI 过低,可以点击下钻到每个订单的其他属性,例如什么会员级别、什么落地页、什么优惠措施、买的产品是哪些,提供产品的商户的服务质量怎么样。这个报表对我们分析师团队来说,也大幅度地提升了工作效率。现在我们可以在 10分钟内知道整个公司一周的业务变化。 案例3,商业分析师的报表沉淀 传统的报表制作流程是,需求方把需求提出来,然后工程师来负责把报表做出来。但是我们会更强调商业分析师的主动性,这个主动性是什么? 第一个主动性的要求是因为商业分析师在看过海量的数据之后需要产生自己的一些想法。从不同的维度上去分析数据,可能会对业务有额外的帮助。 第二个是因为,对于一个业务人员来讲,每天只看自己业务范围内的数据即可,但是跨业务之间的数据产生的价值大部分时候是被忽略的。所以商业分析师需要主动的去思考跨业务之间的逻辑,然后固化在报表上面,给业务人员提供更多的价值。 下面我提供一个途家网自己的案例: 图9:用户出行迁移 (责任编辑:本港台直播) |