在这一波的人工智能创业浪潮中,李开复扮演的角色,近乎于摇旗呐喊的行业代言人,希望吸引更多创业者投身其中。 相对于大部分投资人,他对人工智能有种特殊情结。在卡内基梅隆大学攻读计算机学博士期间,他的研究领域也与AI相关。任职微软时期,李开复在自然交互式软件及服务部门,研究语音、自然语言、搜索等前沿技术。 毕业20年多年后,他邀请母校卡耐基梅隆大学AI扑克Libratus发明者Tuomas Sandholm,携扑克AI“冷扑大师”与中国德扑高手展开较量。这场赛事将在4月6日至4月10日期间举办。“冷扑大师”士气正盛,今年1月,它刚取得了匹兹堡一场人机扑克对战的胜利。 另外,李开复,和创新工场AI工程院副院长王咏刚合著的新书《人工智能》,也将于4月18日预售。他们如何看待人工智能与人类棋牌大师的较量?
创新工场李开复和王咏刚合著新书《人工智能》 棋牌人机大战:人工智能挑战人类智力 AlphaGo带给人类的启示 2016年3月,新浪体育等媒体现场直播了李世石与AlphaGo的第五盘棋赛。绝大多数围棋界人士和人工智能界的科研人员都没想到,围棋程序会在如此短的时间内取得质的突破--计算机在两年内做到了可能需要20年才能做到的事,这样的速度真的让人震撼。 AlphaGo横空出世之前,围棋界的观点也大致相同。因为国际象棋与围棋的复杂度相差甚远,1997年IBM深蓝在国际象棋棋盘上战胜人类棋王的故事并不足以让围棋高手信服。而且,这么多年来,围棋AI程序的研发一直举步维艰。早期基于规则的围棋程序,比如中山大学陈志行教授1990年代研发的“手谈”,基本上只能和围棋初学者过招。直到2006年后,随着蒙特卡洛搜索算法在围棋对弈软件中的应用,MoGo、Zen、CrazyStone等程序的棋力才得到了突飞猛进的提高,开奖,在国际对弈平台KGS上,2006到2012年间,主流围棋对弈软件的棋力从业余2级猛升到业余5段甚至业余6段,但也就此停滞不前。 AlphaGo出现前,围棋界专家对围棋对弈软件棋力的评估基本比较一致,大多认为最好的计算机程序已可以和业余高手过招,但和职业选手之间,还是有着本质的差别。 在今天的围棋界,业余高手和职业高手之间存在2子以上的明显差距,通常,这个差距是职业选手从童年开始,用十年以上的时间刻苦训练得来的,业余选手极难弥补。另一方面,在计算机科学界,懂得蒙特卡洛搜索算法原理的人都知道,这种算法主要是利用抽样统计来提高搜索效率,单用此算法确实难有提高空间。这是AlphaGo出现前,围棋界和计算机科学界两方面都不敢奢望人机大战即将到来的根本原因。 是深度学习改变了一切。使用深度学习并结合蒙特卡洛搜索的AlphaGo已注定被写入历史。AlphaGo问世的第一年内,其实进入大家视野的是三个版本:5:0击败樊麾的内测版本,4:1击败李世石的版本,以“Master(大师)”网名60:0快棋挑落中日韩高手的版本。三个版本演进脉络明显,每次迭代都有重大升级。最后这个网名为“Master(大师)”的版本也基本是2017年AlphaGo挑战柯洁的一个“预览版”。 从围棋角度说,AlphaGo最震撼的是计算机在人类传统认为极其玄妙的、电脑无法掌握的“大局观”上突飞猛进,远远将人类选手甩在身后。电脑计算“大局观”的方式,和人类培养“大局观”的思路,有根本的差别。人类没可能在这方面赶上电脑。和樊麾对局的棋谱基本上还看不出AlphaGo的大局观有多强,和李世石对局就下出了聂卫平赞不绝口的五路肩冲,到了Master的60局,大局观体现在两个地方: 第一,从始至终对局势的把握,比如第60局古力用AlphaGo的思路对付AlphaGo,把中央撑得很满,但AlphaGo不紧不慢,总是恰到好处地保持胜势。 第二,AlphaGo已经深刻影响人类对布局的思考,大飞守角之类的变化迅速被人类棋手模仿,这和当年深蓝问世后,国际象棋的布局革命是一样的。 基于AlphaGo的思路,其他围棋软件的水平也突飞猛进。仅2017年初就有日本研发的DeepZenGo和腾讯人工智能实验室开发的“绝艺”达到了人类九段或以上的水平。腾讯“绝艺”不仅面对人类高手保持了绝对优势,还战胜了AlphaGo以外的各路围棋软件,取得了2017年UEC杯计算机围棋大赛的冠军。 以后AI和AI之间的竞赛,应该会不断促进AI提高。人类虽望尘莫及,但可以不断从AI中学习新的思想。 (责任编辑:本港台直播) |