托马斯·桑德霍姆教授解释说,“在存在两名玩家的零和游戏中,如果有一人不遵从纳什均衡的策略,那么两名玩家获得的收益都将受损,但我们的系统不会这样。在此类游戏中,以纳什均衡的方式思考是最安全的。遵从规律的玩家将合理地获得受益,同时在任何地方都不会被对手利用。”[2] 这一次,比赛规则和2015年那次基本一致,比赛时间从13天延长到20天,仍基于无限制投注的规则,Libratus轮流与人类高手一对一比赛。人类团队计算总分,与Libratus的总得分比较胜负关系。不同的是,升级后的Libratus程序就像围棋棋盘上威风八面的AlphaGo一样,一上来就对四名人类高手形成了全面压制。AI从比赛第一天就一路领先,第6天领先优势虽一度缩小,但从第7天后,人类就再也没有机会弥补巨大的差距了。最终,Libratus领先的筹码数量达到惊人的176.6万美元!在德州扑克领域的人机大战中,人工智能完美胜出! 连续参加了2015年和2017年两次人机大战的人类德州扑克高手Dong Kim说,他在这次比赛全程充满挫败感——其实他已经是四位人类高手里面,对战成绩最好的那个了。两年前曾经击败计算机的Dong Kim在2017年的比赛刚刚过半时就直言:“人类已经没有真正获胜的机会。”[3] 那么,从Libratus大败人类高手的德州扑克对局中,我们能看到哪些人工智能的发展规律呢? Libratus所使用的技术策略非常成功。AI利用增强学习技术,从自我对局中学习最优的扑克玩法,而避免从人类的既定模式中学习经验,这是非常重要的一点。当然,目前Libratus的算法还只适用于无限制投注的一对一比赛。如果将比赛扩展到更常见的多人制比赛,Libratus面对的挑战会更大一些,还需要进行策略上的升级与调整。 计算机在德州扑克领域取得的成功,令人工智能研究者都非常振奋,这主要是因为以下两个原因: · 和围棋不同,在德州扑克的牌桌上,人工智能与人类选手一样,都只能看到部分信息。这种情况下,没有所谓的唯一的、最佳的打法。 · Libratus基本是从零开始学习德州扑克策略,且主要依靠自我对局来学习。这对利用人工智能解决更为广泛的现实问题意义重大。 那些担心人工智能威胁的悲观主义者可能会从Libratus的胜利中看到更为现实的风险。比如,机器曾在比赛中用大赌注和新策略吓退、蒙骗过最精明的人类牌手,这些方法也许会被精明的商人用于人类的商业谈判。一旦这些人工智能算法被犯罪组织利用,是否会出现灾难性的后果?担心出现超人工智能的人还会进一步追问,一旦机器有了自我意识,机器是否会像德州扑克牌桌上的AI算法一样,用各种策略诱骗、恐吓人类呢? 乐观主义者则更多地看到Libratus的算法本身对于人工智能帮助人类解决实际问题的巨大价值。如果机器能够在自我学习中不断完善对于一种特定策略的掌握程度,能够在不熟悉或缺乏全部信息的环境中不断试错并积累经验,那么,机器显然可以胜任更多的人类工作。比如,机器可以帮助人类制定更为复杂的医疗计划,可以在人类感到难以决策的领域,比如商业活动、城市规划、经济调控甚至战争指挥等,充当人类的“参谋”。也许,未来每个人都可以依靠强大的计算机和人工智能程序,成为运筹帷幄、决胜千里的战略家。 [1]Man Proves Greater Than Machine, https://www.pokernews.com/news/2015/05/man-is-greater-than-machine-players-win-732-713-against-ai-p-21508.htm. [2]机器之心(微信公号),2017.1,重磅 | 德扑人机大战收官,Libratus 击败世界顶尖扑克选手。 [3]量子位(微信公号),2017.1,德扑人机大战落幕:AI赢了176万美元。这里是一份超详细的解读。 (责任编辑:本港台直播) |