本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

【j2开奖】深度 | 迁移学习全面概述:从基本概念到相关研究(3)

时间:2017-03-28 03:40来源:香港现场开奖 作者:118开奖 点击:
迁移学习可以帮助我们处理这些全新的场景,它是机器学习在没有大量标签数据的任务和域中规模化应用所必须的。到目前为止, atv直播 ,我们已经把我

迁移学习可以帮助我们处理这些全新的场景,它是机器学习在没有大量标签数据的任务和域中规模化应用所必须的。到目前为止,atv直播,我们已经把我们的模型应用在了能够容易获取数据的任务和域中。为了应对分布的长尾,我们必须学会把已经学到的知识迁移到新的任务和域中。

为了做到这个,开奖,我们需要理解迁移学习所涉及到的概念。基于这个原因,我会在下面的内容中给出更加技术性的定义。

迁移学习的定义

为了这个定义,我会紧密地遵循 Pan 和 Yang(2010) 所做的杰出的综述 [6],并以一个二元文档分类为例。

迁移学习涉及到域和任务的概念。一个域 D 由一个特征空间 X 和特征空间上的边际概率分布 P(X) 组成,其中 X=x1,…, xn∈X。对于有很多词袋表征(bag-of-words representation)的文档分类,X 是所有文档表征的空间,xi 是第 i 个单词的二进制特征,X 是一个特定的文档。(注:这里的 X 有两种不同的形式,这里不太好呈现,具体请参考原文。)

给定一个域 D={X,P(X)},一个任务 T 由一个标签空间 y 以及一个条件概率分布 P(Y|X) 构成,这个条件概率分布通常是从由特征—标签对 xi∈X,yi∈Y 组成的训练数据中学习得到。在我们的文档分类的例子中,Y 是所有标签的集合(即真(True)或假(False)),yi 要么为真,要么为假。

给定一个源域 Ds,一个对应的源任务 Ts,还有目标域 Dt,以及目标任务 Tt,现在,迁移学习的目的就是:在 Ds≠Dt,Ts≠Tt 的情况下,让我们在具备来源于 Ds 和 Ts 的信息时,学习得到目标域 Dt 中的条件概率分布 P(Yt|Xt)。绝大多数情况下,假设可以获得的有标签的目标样本是有限的,有标签的目标样本远少于源样本。

由于域 D 和任务 T 都被定义为元组(tuple),所以这些不平衡就会带来四个迁移学习的场景,我们将在下面讨论。

迁移学习的场景

给定源域和目标域 Ds 和 Dt,其中,D={X,P(X)},并且给定源任务和目标任务 Ts 和 Tt,其中 T={Y,P(Y|X)}。源和目标的情况可以以四种方式变化,我们仍然以我们的文档分类的例子在下面描述:

XS≠XT。源域和目标域的特征空间不同,例如,文档是用两种不同的语言写的。在自然语言处理的背景下,这通常被称为跨语言适应(cross-lingual adaptation)。

P(Xs)≠P(Xt)。源域和目标域的边际概率分布不同,例如,两个文档有着不同的主题。这个情景通常被称为域适应(domain adaptation)。

YS≠YT。两个任务的标签空间不同,例如,在目标任务中,文档需要被分配不同的标签。实际上,这种场景通常发生在场景 4 中,因为不同的任务拥有不同的标签空间,但是拥有相同的条件概率分布,这是极其罕见的,

P(Ys|Xs)≠P(Yt|Xt)。源任务和目标任务的条件概率分布不同,例如,源和目标文档在类别上是不均衡的。这种场景在实际中是比较常见的,诸如过采样、欠采样以及 SMOTE[7] 这些方法被广泛应用。

在明白了与迁移学习相关的概念和常被用到的一些场景之后,我们将要介绍一些能够说明它的潜力的应用。

迁移学习的应用

从模拟中学习

一个非常令我兴奋并且我认为我们在将来会见到更多的迁移学习应用就是从模拟中学习。对很多依靠硬件来交互的机器学习应用而言,在现实世界中收集数据、训练模型,要么很昂贵,要么很耗时间,要么只是太危险。所以最好能以某些风险较小的其他方式来收集数据。

模拟是针对这个问题的首选工具,在现实世界中它被用来实现很多先进的机器学习系统。从模拟中学习并将学到的知识应用在现实世界,这是迁移学习场景 2 中的实例,因为源域和目标域的特征空间是一样的(仅仅依靠像素),但是模拟和现实世界的边际概率分布是不一样的,即模拟和目标域中的物体看上去是不同的,尽管随着模拟的逐渐逼真,这种差距会消失。同时,模拟和现实世界的条件概率分布可能是不一样的,因为模拟不会完全复制现实世界中的所有反应,例如,一个物理引擎不会完全模仿现实世界中物体的交互。

  

【j2开奖】深度 | 迁移学习全面概述:从基本概念到相关研究

图 6:谷歌的自动驾驶车辆(来源: Google Research 博客)

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容