此外,深度强化学习还正在用于为Google的数据中心节省大量电力能源。在上述最后一项中,DeepMind的实验取得了节能15% —— 或节省40%冷能的成果——这相当于数百万美元。DeepMind现在希望将客户范围扩大到英国国家电网和其他公用事业提供商。
DeepMind 将深度强化学习用于谷歌数据中心节能,现在还和英国政府洽谈接入调节英国电网节能 “我们在真实世界的大规模的、嘈杂又混乱的数据集上测试我们的算法。”Suleyman说,“这是一种解决我们最复杂社会问题的相当独特的方法。” 研究人员被分为四个大组,还有两三个“别动队” “如果你看看谷歌5、6年前的工作方式,会发现它的研究在很大程度上是以产品为导向的,而且周期较短。这被认为是个优势。”Hassabis说道,“但如果你想尽快地推进研究,那么就需要给科学家空间,好让他们思考什么对研究是有利的,而不是对某种产品需求负责。” DeepMind已经三次登上Nature的封面,有120多篇论文在顶级科学会议上发表,这表明了其旺盛的科技创造力,也表明了其在谷歌的特殊地位。
DeepMind 研究成果屡次发表在顶级期刊,左边便是最著名的 AlphaGo 登上Nature 封面 “现在我们的研究团队完全不受任何短期需求的影响,不管是来自谷歌内部还是外部的。我们希望对世界产生巨大影响,直播,但我们的研究需要得到呵护。”Hassabis说道。“我们已经展示了凭借这样的公司文化,我们可以取得多大的成就。我认为谷歌也注意到了这一点,他们因此对我们也有了更为长远的诉求。” DeepMind现在手头上还有6篇论文手稿明年有望刊登在Nature、Science这样的顶级科学期刊上。“这方面我们比其他学术实验室做得更好,但我们的目标并不是产出一篇Nature论文。”Hassabis说,“我们集中精力攻克每一个具体问题。进行伟大的科学研究,论文发布就是自然而然的副产品。” DeepMind研究人员被分入四个主要的组,名为“神经科学”或“前沿学科”(这个组主要由物理学家和数学家组成,测试AI领域最具前瞻性的理论)。除此以外有一些更深入更专业的团队。其中许多项目负责人都是Hassabis上一家公司Elixir Studios的游戏制作人。 每8周,科学家们向包括Hassabis和研究负责人Shane Legg的团队领导讲述自己的研究进展。团队的领导人以此来决定针对数十个项目的研究资源分配。“我们交流想法,思考,测试,找出看上去有成效的项目,并分析原因。”Legg说。 进展迅速的项目会得到更多的人力和时间,而其他一些会被停掉,所有这些只是几周的事情。“在学术机构里,为了一个新的轮回,你可能要等上几年。但我们这里资源转换的速度非常快。”Hassabis说。 其他时间里,公司也有两到三个称为“别动队”的团队,用来解决一些特定问题。“我们在AlphaGo上就是这么做的。一旦它在开始六个月显现出某种前景,开奖,我们就会加派一个带有专业技能的15人的团队,来把它进行到底。”Hassabis说,“这就允许我们把最适合的专家派过去。他们就像是临时调任到那个项目上去,最终他们会回到他们原来的项目中。”
DeepMind 团队 提倡跨领域合作;“不仅是职业选择,更是生活方式的改变” 对于一些世界上最聪明的大脑来说,这种组织文化像一块吸铁石。Jane Wang是DeepMind的一位认知神经科学家,她曾在芝加哥的Northwestern University做博士后。她说她加入DeepMind是受到了DeepMind清晰的社会使命的吸引。“我在其他一些产业实验室也面试过,DeepMind跟它们不同,这里没有明显的产品化带来的压力,也没有太多限制。这里的使命就是保持好奇。”她说道。 对于神经科学团队的领导 Matt Botvinick 来说,加入DeepMind不仅是一个事业抉择,更是生活方式的变化。这位Princeton University神经科学学院的前教授继续生活在美国,每隔一周和伦敦的DeepMind实验室沟通一次。 (责任编辑:本港台直播) |