本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

码报:【j2开奖】入门级解读:小白也能看懂的TensorFlow介绍(2)

时间:2017-02-21 21:44来源:668论坛 作者:本港台直播 点击:
数据可以用多维表示,这契合我们表征具有 n 个特征的数据点(左下方,也称为特征矩阵)以及具有 n 个权重模型(右下,也称为权重矩阵)的方式 单个

数据可以用多维表示,这契合我们表征具有 n 个特征的数据点(左下方,也称为特征矩阵)以及具有 n 个权重模型(右下,也称为权重矩阵)的方式

码报:【j2开奖】入门级解读:小白也能看懂的TensorFlow介绍

单个数据点的 n 个特征与模型的矩阵形式的 n 个权重

在 TF 中,它们将被写为:

x = tf.placeholder(tf.float,[1,n])

W = tf.Variable(tf.zeros [n,1])

注意:对于 W,我们使用 tf.zeros,它将所有 W1,W2,...,Wn 初始化为零。

在数学上,矩阵乘法是向量乘法的加总;因此自然地,特征(中间的一个)和权重(右边的)矩阵之间的矩阵乘法给出(左边的)结果,即等于 n 个特征的线性回归公式的第一部分(如上所述),没有截距项。

  

码报:【j2开奖】入门级解读:小白也能看懂的TensorFlow介绍

特征和权重矩阵之间的矩阵乘法给出结果(未添加截距项)

在 TF 中,这种乘法将表示为:

y = tf.matmul(x, W)

多行特征矩阵(每行表示数据点的 n 个特征)之间的矩阵乘法返回多行结果,每行代表每个数据点的结果/预测(没有加入截距项);因此一个矩阵乘法就可以将线性回归公式应用于多个数据点,并对应地产生多个预测(每个数据点对应一个结果)(见下文)

注意:特征矩阵中的 x 表示变的更复杂,即我们使用 x1.1、x1.2,而不是 x1、x2 等,因为特征矩阵(中间矩阵)从表示 n 个特征(1 行 x,n 列)的单个数据点扩展到表示具有 n 个特征(m 行 x,n 列)的 m 个数据点。因此,我们扩展 x <n>(如 x1)到 x <m >.<n>(如 x1.1),其中,n 是特征数,m 是数据点的数量。

  

码报:【j2开奖】入门级解读:小白也能看懂的TensorFlow介绍

具有模型权重的多行矩阵乘法产生矩阵的多个行结果

在 TF 中,它们将被写为:

x = tf.placeholder(tf.float,[m,n])

W = tf.Variable(tf.zeros [n,1])

y = tf.matmul(x,W)

最后,向结果矩阵添加常数,也就是将常数添加到矩阵中的每一行

在 TF 中,用矩阵表示 x 和 W,无论模型的特征数量或要处理的数据点数量,矩阵都可以简化为:

b = tf.Variable(tf.zeros[1])

y = tf.matmul(x, W) + b

Tensorflow 的多特征备忘单

我们做一个从单一特征到多特征的线性回归的变化的并行比较:

  

码报:【j2开奖】入门级解读:小白也能看懂的TensorFlow介绍

Tensorflow 中的单特征与 n 个特征的线性回归模型

总结

在本文中,我们介绍了多特征线性回归的概念,并展示了我们如何将模型和 TF 代码从单特征的线性回归模型扩展到 2 个特征的线性回归模型,并可以推广到 n 特征线性回归模型。最后我们为多特征的 TF 线性回归模型提供了一张备忘单。

逻辑回归

逻辑回归综述

我们已经学会了如何使用 Tensorflow(TF)去实现线性回归以预测标量值得结果,例如给定一组特征,如住房大小,预测房价。

然而,有时我们需要对事物分类(classify)而不是去预测一个具体的数值,例如给定一张含有数字(0-9 十个数字中的一个)的图片,我们需要将其分类为 0,1,2,3,4,5,6,7,8,9 十类。或者,我们需要将一首歌曲进行归类,如归类为流行,摇滚,说唱等。集合 [0,1,2,...,9]、[流行,摇滚,说唱,等等] 中的每一个元素都可以表示一个类。在计算机中,我们通常用数字对抽象名词进行表示,比如,pop = 0, rock = 1, 等等。为了实现分类,我们使用 TF 来实现逻辑回归。

在本文中,我们将使用逻辑回归将数字图片归类为 0,1,2,3,4,5,6,7,8,9 这十类。

逻辑回归的细节

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容