1988年:马文·明斯基(Marvin Minsky)和西摩尔·帕普特(Seymour Papert)出版了图书《Perceptrons》,这本书1969年首次出版,1988年扩充后再版。两人解释了再版的原因:“AI领域的研究为何没有取得突破?因为研究人员不熟悉历史,老是犯一些前人已经犯过的错误。” 1989年:燕乐存(Yann LeCun)与AT&T贝尔实验室的其它研究人员携手合作,成功将反向传播算法应用于多层神经网络,它可以识别手写邮编。由于当时的硬件存在限制,训练神经网络花了3天。 1990年:罗德尼·布鲁克斯(Rodney Brooks)发表了《lephants Don’t Play Chess》,他提出了新的AI方法:利用环境交互重新打造智能系统和特殊机器人。布鲁克斯称:“世界就是我们的最佳模型……关键在于正确感知它,保持足够高的频率。” 1993年:弗农·温格(Vernor Vinge)发表了《The Coming Technological Singularity》,他预测在30年之内,我们可以用技术创造出超智者,简言之,人类将会终结。 1995年:理查德·华莱士(Richard Wallace)开发了聊天机器人 A.L.I.C.E(Artificial Linguistic Internet Computer Entity的缩写),它受到了ELIZA的启发,由于互联网已经出现,网络为华莱士提供了海量自然语言数据样本。 1997年:赛普·霍克赖特(Sepp Hochreiter)和于尔根·施密德胡伯(Jürgen Schmidhuber)提出了LSTM概念(长短期记忆),今天的递归神经网络就是用这种方法开发的,它可以识别手写笔迹,还可以识别语音。 1997年:IBM研发的“深蓝”(Deep Blue)击败人类象棋冠军。 1998年:戴夫·汉普顿(Dave Hampton)和钟少男(Caleb Chung)开发了Furby,它是第一款家庭机器人,或者说是宠物机器人。 1998年:燕乐存(Yann LeCun)与人合作发表论文,谈到了用神经网络识别手写笔迹的问题,还谈到了优化向后传播的问题。 2000年:MIT研究人员西蒂亚·布雷泽尔(Cynthia Breazeal)开发了Kismet,它是一个可以识别、模拟表情的机器人。 2000年:本田推出了ASIMO,它是一个人工智能拟人机器人,可以像人类一样快速行走,在餐馆内可以将盘子送给客人。 2001年:斯皮尔伯格拍摄的电影《人工智能》上映,影片中一个机器人很像人类小孩,他的程序很独特,拥有爱的能力。 2004年:第一届DARPA自动驾驶汽车挑战赛在莫哈韦沙漠举行,可惜没有一辆自动驾驶汽车完成150英里的挑战目标。
2006年:杰弗里·辛顿(Geoffrey Hinton)发表《Learning Multiple Layers of Representation》,他首次提出了“机器阅读”这一术语,所谓机器阅读就是说系统不需要人的监督就可以自动学习文本。 2007年:杰弗里·辛顿(Geoffrey Hinton)发表《Learning Multiple Layers of Representation》,根据他的构想,我们可以开发出多层神经网络,这种网络包括自上而下的连接点,可以生成感官数据训练系统,而不是用分类的方法训练。辛顿的理论指引我们走向深度学习。 2007年:李飞飞(Fei Fei Li )和普林斯顿大学的同事携手合作,开始研究ImageNet,这是一个大型数据库,由大量带注解的图片组成,旨在为视觉对象识别软件研究提供辅助。 2009年:Rajat Raina、阿南德·马德哈迈(Anand Madhavan)和吴恩达(Andrew Ng)发表论文《Large-scale Deep Unsupervised Learning using Graphics Processors》,他们认为“现代图形处理器的计算能力远超多核CPU,GPU有能力为深度无监督学习方法带来变革。” 2009年:谷歌开始秘密研发无人驾驶汽车,2014年,谷歌在内华达州通过了自动驾驶测试。 2009年,西北大学智能信息实验室的研究人员开发了Stats Monkey,它是一款可以自动撰写体育新闻的程序,不需要人类干预。 2010年:ImageNet大规模视觉识别挑战赛(ILSVCR)举办。 2011年:在德国交通标志识别竞赛中,一个卷积神经网络成为赢家,它的识别率高达99.46%,人类约为99.22%。 2011年:IBM开发的自然语言问答计算机沃森在“危险边缘”(Jeopardy!)中击败两名前冠军。 2011年:瑞士Dalle Molle人工智能研究所发布报告称,用卷积神经网络识别手写笔迹,错误率只有0.27%,之前几年错误率为0.35-0.40%,进步巨大。 2012年6月:杰夫·迪恩(Jeff Dean)和吴恩达(Andrew Ng)发布报告,介绍了他们完成的一个实验。两人向大型神经网络展示1000万张未标记的图片,这些图片是随机从YouTube视频中抽取的,发现当中的一个人工神经元对猫的图片特别敏感。 2012年10月:多伦多大学设计的卷积神经网络参加ImageNet大规模视觉识别挑战赛(ILSVCR),它的错误率只有16%,比往年25%的错误率大幅改进。 2016年3月:谷歌DeepMind研发的AlphaGo击败围棋冠军李世石。 原文来自:福布斯 (责任编辑:本港台直播) |