NASA的航空创新者与政府和行业伙伴一起在夏洛特的道格拉斯国际机场揭开了新研究实验室的面纱。空域技术验证-2(airspace technology demonstration, ATD-2)实验室是一个5年测试研究的一部分,该研究着眼于在全国航空系统中提高飞机起飞到达效率,直播,改进地面综合系统以提高安全性和效率,降低燃油使用。 技术上的进步可以作为在有管制和无管制的空域安全操控无人飞行器系统(Unmanned Aircraft Systems, UAS),俗称为无人机(drones)的一部分。利用NASA的伊卡纳(Ikhana)无人机与虚拟的和真实的“入侵者”(intruder)飞行器实现的复杂飞行测试在今年夏天展开,在有管制的国家空域测试复杂的“发现并躲避”(detect and avoid)技术。
图中是洛克希德-马丁的未来超音速概念机,三个引擎分别位于机翼下和机身上部(图中不可见)。 2016年4月,NASA的工程师和来自美国联邦航空管理局(Federal Aviation Administration, FAA)全国6个无人机测试场地的操作人员在NASA的无人机交通管理(UAS traffic management, UTM)研究平台上同时放飞了22个无人机进行田野飞行,这是首次也是最大规模的同类演示。 着眼于为明日的挑战提供革命性解决方案,NASA选择了5个环保科技概念作为研究方向,包括可替代性燃料电池,利用3D打印增加电动马达输出,用锂电池作为能量储备,在飞行过程中变换机翼形状的新技术,以及在设计和开发飞行器天线时使用一种叫做气凝胶的轻型材料。 五:地球 今年,新的地球科学任务带领我们继续研究复杂的星球,从最高的大气层直到其最核心。NASA与美国海洋暨大气总署(National Oceanic and Atmospheric Administration, NOAA)和欧洲伙伴一同在2016年1月启动了一项海洋卫星任务,将在未来25年内记录全球海平面上升的数据。来自Jason-3任务的数据将用于改善天气,气候和海洋的预测,包括协助NOAA的全国天气服务,以及其他全球天气与环境预报机构更准确地预测热带气旋的强度。 2016年11月,NASA成功为NOAA发射了地球同步气象卫星(Geostationary Operational Environmental Satellite-R, GOES-R)中的首颗卫星。GOES-R会提升全国气象观测能力,实现更准确更及时的预报,观测和预警。 NASA还推动了一项新技术的进步,以便我们更好地理解全球范围内的飓风情况。飓风全球导航卫星系统(Cyclone Global Navigation Satellite System, CYGNSS)任务于2016年12月15日发射。它是一个独特的小卫星星座,帮助我们改善对于飓风风力,轨迹和风暴潮的预测能力。 2017年NASA会向国际空间站发射两个地球观测部件,作为运行中的轨道空间实验室的一部分,研究我们日益变化的星球。来自NASA朗格里研究中心(Langley Research Center)的平流层气溶胶和气体实验-3(Stratospheric Aerosol and Gas Experiment III, SAGE III)让NASA获得了观测地球臭氧层,记录其恢复过程的新方法。马歇尔航天飞行中心(Marshall Space Flight Center)的闪电成像传感器(Lightning Imaging Sensor, LIS)能测量全球绝大多数地区云层中和云层地面间的闪电情况,数据将有助我们更好理解闪电与天气及相关现象之间的关系。两个部件会长期持续记录地球运行数据。
计划搭载Jason-3海洋卫星的SpaceX猎鹰9号火箭正被运往加州范登堡空军基地(Vandenberg Air Force Base)的航天发射操作台4-东,为2017年1月17日的发射做好准备。 Credits: SpaceX NASA于2002年发射的重力恢复与气候试验(Gravity Recovery and Climate Experiment)双子卫星是第一个能提供陆地液态水存储量趋势量化数据的工具。任务最新的测量结果于2016年2月公布,数据使研究人员首次测算出如果气候变化,将有多少存储于陆地上的水会流入大海导致海平面上升。 NASA和美国国际发展署(U.S. Agency for International Development, USAID)将他们今年共同支持的SERVIR环境监控中心网络从发展中国家扩展到西非。 六:技术 NASA的航天技术任务局为空间机器人生产和组装计划选择了3家公司。这一计划将推动整个系统从概念到技术的成熟,预期将颠覆我们在低地轨道(low-Earth orbit)设计部署航天器和大型空间设备的方式,例如增材制造(additive manufacturing),机器人,自动化,以实现航天器结构系统在轨生产和组装。 (责任编辑:本港台直播) |