本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

wzatv:【j2开奖】观点|宋睿华:好玩的文本生成(3)

时间:2016-12-26 21:41来源:报码现场 作者:118开奖 点击:
这篇文章的想法非常有意思,他们想使用VAE(varationalautoencoder的简称)学习到一个更连续的句子空间。如图八所示,作者使用了单层的LSTM 模型作为encode

这篇文章的想法非常有意思,他们想使用VAE(varationalautoencoder的简称)学习到一个更连续的句子空间。如图八所示,作者使用了单层的LSTM 模型作为encoder(编码器)和decoder(解码器),并使用高斯先验作为regularizer(正规化项),形成一个序列的自动编码器。比起一般的编码解码框架得到的句子编码往往只会记住一些孤立的点,VAE框架学到的可以想象成是一个椭圆形区域,这样可以更好地充满整个空间。我的理解是,VAE框架将贝叶斯理论与深度神经网络相结合,在优化生成下一个词的目标的同时,也优化了跟先验有关的一些目标(例如KL cost和crossentropy两项,细节请参考论文),使对一个整句的表达更好。

wzatv:【j2开奖】观点|宋睿华:好玩的文本生成

当然,为了实现这一想法,作者做了很多尝试。首先,对图八所展示的结构做一些变形并没有带来明显的区别。但在优化时,使用退火的技巧来降低KL cost和训练时把适当比例的词变为未知词(即word dropout)这两项技术就非常有效。

作者们通过两个有意思的实验来展示了他们的结果。一个是做填空题,如图九所示,隐藏句子的后20%,让模型来生成后面的部分。从几个例子看,VAE的方法比RNN语言模型(简称RNNLM)更加通顺和有信息量。第二个实验就是在两个句子之间做轮移(Homotopy,也就是线性插值),对比图六和图七,可以看出VAE给出的句子更平滑而且正确,这一点可以间接说明学习到的句子空间更好地被充满。

wzatv:【j2开奖】观点|宋睿华:好玩的文本生成

当然,作者们还给出了一些定量的比较结果。在比较填空结果时,他们使用了adversarial evaluation(对抗评价)。具体的做法是,他们取样50%的完整句子作为正例,再拿50%的由模型填空完成的句子作为负例。然后训练一个分类器,如果一个模型填的越难与正例分开,就说明这种模型的生成效果更好,更具欺骗性。因此,可以认为这一模型在填空任务上更出色。实验的结果也支持VAE比RNNLM更好。

  问题与难点

人工智能真的会创作吗?使用深度学习技术写出的文章或者对话,的确是会出现训练集合里未见过的句子。例如,一个原句的前半段可能会跟上另一个原句的后半段;也可能除了词,搭配组合都是训练集里没有的。这看起来有些创作的意味,但是细究起来,往往是原句的部分更为通顺和有意义。目前的技术可以拼凑,偶尔出现一两个好玩的点,但是写得长了,读起来会觉得没头没脑,这是因为没有统领全篇的精神,跟人类的作家比当然还是相差很远。

机器学习到的还只是文字表面,没有具备人要写文章的内在动因。人写文章表达的是自己的思想和感受,这是机器所没有的。因此,atv,即使是机器写文章,具体想要表达什么,似乎还要由人来控制。但如果控制得太多,看起来又不那么智能,少了些趣味。我认为,要想让机器更自由地写出合乎逻辑的话来,我们还需要类似VAE那篇文章一样更深入的研究,对句子甚至段落的内在逻辑进行学习。

另外,人在写一篇文章的时候,很容易自我衡量语句是否通顺、思想是否表达清楚以及文章的结构是否清晰有趣,机器却很难做到。因此,优化的目标很难与真正的质量相一致。目前的自然语言理解技术对于判断句法语法是否正确可能还有些办法,但要想判断内容和逻辑上是否顺畅,恐怕还需要常识和推理的帮助,这些部分暂时还比较薄弱。但也并非毫无办法,我相信未来对文本生成的研究一定会涉及这些方面。

期待更多的人来研究如此好玩的文本生成。

  参考文献

  【1】

  【2】

  【3】https://www.theguardian.com/technology/2016/may/17/googles-ai-write-poetry-stark-dramatic-vogons

  【4】

  【5】

  【6】https://github.com/karpathy/char-rnn

  【7】

  【8】刘挺,人机对话浪潮:语音助手、聊天机器人、机器伴侣,中国计算机学会通讯,2015年第10期,2015

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容