GAN 是一种用可以利用监督学习来估测复杂目标函数的生成模型(注:这里的监督学习是指 GAN 内部自己拿真假样本对照,并不是说 GAN 是监督学习)。 GAN 可以估测很多目标函数,包括最大似然(Maximum likelihood)(因为这是生成模型大家族的标配)。 在高维度+连续+非凸的情况下找到纳什均衡依旧是一个有待研究的问题(近两年想上会议的博士生们可以重点关注)。 GAN 自古以来便是 PPGN 不可分割的重要部分。(看到自己的理论基础被运用到一个新高度,GAN 之父会心一笑~) ©本文为机器之心原创文章,转载请联系本公众号获得授权。 ?------------------------------------------------ 加入机器之心(全职记者/实习生):[email protected] 投稿或寻求报道:[email protected] 广告&商务合作:[email protected] (责任编辑:本港台直播) |