本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

wzatv:【j2开奖】MIT 对抗学习和无监督学习最新进展:机器学会创作视频,预测人类行为

时间:2016-11-29 19:35来源:香港现场开奖 作者:j2开奖直播 点击:
:COO、执行总编、主编、高级编译、主笔、运营总监、客户经理、咨询总监、行政助理等 9 大岗位全面开放。 简历投递:j [email protected] HR 微信: 13552313024 新智元为COO和执行总编提供

  :COO、执行总编、主编、高级编译、主笔、运营总监、客户经理、咨询总监、行政助理等 9 大岗位全面开放。

  简历投递:j[email protected]

  HR 微信:13552313024

  新智元为COO和执行总编提供最高超百万的年薪激励;为骨干员工提供最完整的培训体系、高于业界平均水平的工资和金。

  加盟新智元,与人工智能业界领袖携手改变世界。

  【新智元导读】LeCun曾在演讲中提到,2016年深度学习领域最让他兴奋的技术莫过于对抗学习,而无监督学习一直都是人工智能研究者孜孜追求的“终极目标”之一。MIT 计算机科学和人工智能实验室的研究员们在本年度的NIPS上提交了结合对抗学习和无监督学习两种方法的研究——让计算机在观看了200万条视频后自动“创作视频内容,结果非常逼真。研究所开发的深度学习神经网络也可以直接用到现有的图片和视频中,把静态图片变成动态视频,并且对人类的动作具有一定的判断和预测能力。

  MIT 计算机科学和人工智能实验室(CSAIL) 的研究员开发了一个深度学习算法,能够自动生成视频,并预测出接下来的视频内容。

  研究成果论文将在下周在巴塞罗那举行的 NIPS ( Conference on Neural Information Processing Systems )上发表。CSAIL 的研究团队让该算法观看了200万条视频,这些视频加起来如果要回放的话,需要2年的时间才能播完。

  视频包含了日常生活的常见场景,以让机器更好地适应正常的人类交流行为。更重要的是,这些视频是“野生”的,也就是说,它们都是非标签的。简单地说,就是研究员不会给算法提供理解视频内容的任何线索。

  在这一视频数据集的基础上,算法将基于200万条视频中获得的观察,尝试从零开始生成视频,这和人类创作视频的步骤是一样的 。随后,生成的视频会被填入另一个深度学习算法中,新的算法负责判断哪些视频是机器生成的,哪些是“真实”的。这种训练机器的方法叫对抗式学习(adversarial learning)。

  研究使用的神经网络工作原理

  计算机视觉研究领域中,许多研究者都在攻克类似的问题,其中就包括MIT的教授 Bill Freeman,他在”视觉动态“(visual dynamics)领域的工作也能提前创造出视频中下一帧。但是,直播,他的模型聚焦于推断性的视频,Torralba 的视频能够生成全新的视频,这些视频内容此前是从未讲过的。

  

wzatv:【j2开奖】MIT 对抗学习和无监督学习最新进展:机器学会创作视频,预测人类行为

图来自 : Carl Vondrick, MIT CSAIL

  此前的系统都是一帧一帧地创建场景,这会带来巨大的失误概率,这项研究聚焦于一次处理整个场景,算法每秒生成32帧图像。”一帧一帧地创建场景,意味着信息是被分成很多块的“,Vondrick 说,”我们采用同时预测所有帧的方法。“

  当然,一次生成所有的帧也有缺点:在变得更精确的同时,长视频中的计算机模型会变得更加复杂。

  为了创建出多帧的效果,研究者教会模型在不受背景的影响下生成前景,然后,把对象放到场景中,开奖,让模型学习哪一个物体是移动的,哪一个不动。团队使用了”对抗学习“的方法,在多次尝试后,生成器学会如何”欺骗“区分器(discriminator)。

  

  “双流架构”,生成视频更逼真

  ”在这一模型的早期原型中,我们的发现是,生成器(也就是神经网络)会改变背景或者在背景中加入异常的动态图片,来尝试欺骗其他的网络“,CSAIL 博士候选人、论文第一作者Carl Vondrick说,”我们需要告诉模型一个概念,那就是现实世界在大多数情况下都是静态的。“

  为了改正这一问题,Vondrick 和他的同事创造了一个“双流架构”(two-stream architecture),这一架构会强迫生成的网络在前景中的对象移动时,对静态的背景进行渲染。

  这种”双流架构“模型生成许多更加逼真的视频。算法生成的视频是64X64分辨率的,包含了32帧(标准的电影是每秒24帧,这意味着算法生成的视频有1秒~1.5秒),视频描绘的内容包括沙滩、火车站以及新生儿的脸(下图,这相当吓人)。

  

wzatv:【j2开奖】MIT 对抗学习和无监督学习最新进展:机器学会创作视频,预测人类行为

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容