水滴:疏水表面上的水经常会分裂成小水滴。表面张力对水滴形状起决定性作用,使水滴呈球形。此外,重力(在垂直方向上把水滴压扁)和水滴-固体表面之间的力也影响水滴形状。如果后两种力更强,水滴就成了扁平的透镜一样的形状,如果表面疏水性能不好,液体将摊成平坦而光滑的膜。(图片作者:左上: Stuchelova, Kuttelvaserova / Shutterstock;右上: Olgysha / Shutterstock; 底部: Pitiya Phinjongsakundit / Shutterstock) 我们可以用表面张力解释平面泡筏和立体泡堆的结构。泡堆会自发形成表面张力总和最小,即泡泡表面积总和最小的结构。同时,堆积结构的稳定性也需要保证,连接处的力需要在每个泡泡之间均匀分配,才能建起“泡泡大楼”。单层泡筏中三个肥皂泡相接,堆叠的泡堆中四个肥皂泡相接,都是为了取得这一平衡。 有些人认为蜂巢的本质就是由柔软蜂蜡固化形成的泡筏,但这无法解释为什么造纸胡蜂的巢穴也都是六边形结构。造纸胡蜂是一种特殊的胡峰,它可以咀嚼木纤维或者植物茎部,混合唾液后合成一种特殊的“纸”。这种纸的表面张力小到可以忽略,而不同种类胡蜂巢穴的整体形状也差异显著。
造纸胡蜂 生物细胞的排列也常常遵守着同样的规则。蝇类的复眼是和泡筏一样的六边形阵列,每个小眼背后的四个感光细胞也按照同样的规则排列。在拥有不只四个感光细胞的突变个体中,这些细胞形成的新的堆叠方式依旧遵循泡筏规则。
复眼:昆虫的复眼也像泡泡一样,是六边形的阵列,区别在于昆虫复眼中的每个小眼都与平面下一个细长的视网膜细胞相接。复眼这类细胞堆积方式和泡筏的原理一致,任何一个交接处都有三个细胞。图片为苍蝇复眼的显微照片,每个小眼由四个感光细胞组成,而感光细胞的排列方式也和四个泡泡的排列方式相同。(图片来源:Tomatito / Shutterstock) 泡泡之间的连接方式是由力学规律决定的,但每个泡泡的具体形状并不确定。一堆泡沫里往往有形状大小各异的泡泡。仔细观察每个泡泡的边缘,你会发现它们很少有严格的直线,都或多或少带些弧度。这是因为,泡泡越小内部的压力就越大,在压力作用下,与大泡泡相邻的小泡泡的边缘会稍稍外凸。此外,还有一些泡泡呈四边形,atv,五边形,七边形……边缘的轻微弯曲让这些形状的泡泡也能够以四面相接的形式彼此接触,形成满足力学稳定性的四面体结构。虽然泡泡的形状会发生微调,但它们并非乱作一团,依然遵循着一定的规律。 那么,是否存在一种完美的泡泡形状,可以让泡堆中的每个泡泡大小一致呢?什么样的形状可以在取得最小总表面积的同时,满足结构对接触角度的要求?人们已经为这个问题争论了很多年。长期以来,人们一直认为这种理想的形状是由正方形和六边形表面围成的一种十四面体。但是在1993年,人们发现了一种不那么规则却更加经济的的结构。严格来讲,这种结构不是单个泡泡的形状,而是一个由八种不同形状的泡泡拼接而成的组合单元。北京奥运会的水立方正是运用了这种复合结构。
水立方(图片来源:hwjyw.com) 在表面张力的作用下,肥皂水会在闭合的线框间形成薄膜(想想吹泡泡用的塑料圈)。如果线框弯曲,膜的表面也会随之弯曲,用最小的膜面积覆盖整个区间。这给试图用最少材料建造复杂屋顶的建筑学家提供了启示。除了弗雷·奥托等把经济因素排在首位的建筑师,这种“极小曲面”本身的优美也吸引了众多科学家。
弗雷·奥托为1972年德国慕尼黑夏季奥运会设计的主要场馆屋顶。 (图片来源:) (责任编辑:本港台直播) |