图2. (a) 反铁磁海森堡自旋梯子的量子蒙特卡洛模拟结果。纵轴为磁化率,横轴为温度。偶数条腿的自旋梯子,相当于S 为整数的自旋链,具有能隙,磁化率在低温下指数地降为零;奇数条腿的自旋梯子,相当于S 为半整数的自旋链,没有能隙,磁化率在低温下为常数。(b) S = 1 的反铁磁海森堡自旋链中的边界态。(c) S = 1 的反铁磁海森堡自旋链中的Haldane gap, L 为链长度,在链为无穷长时(1/L^2 = 0), gap 为有限值。 AKLT 模型与S=1 的反铁磁海森堡模型并不完全一致,但它们的基态都属于Haldane phase,具有共同的性质。随后人们发现,Haldane phase 中虽然没有明显的对称破缺,却存在隐藏的对称破缺,而且可以通过所谓的弦序参量(string order)
来描述这一隐藏的对称破缺造成的长程序den Nijs and Rommelse [1989]。值得注意的是,被破缺的隐藏的对称性是非局域的对称性,与通常的global 的对称性是不同的。而且弦序参量本身也是非局域的,不同于通常意义上的局域物理量的长程关联(如下式)。 由于具有上述一系列非平凡的物理性质,Haldane phase 是目前公认的早期被发现的拓扑相之一(另一个典型的例子是量子霍尔态)。Haldane 猜想提出不久便吸引了数值和实验上的大量的研究。下面我们来看看Haldane phase, Haldane gap 存在的证据。 90 年代初,Steven White 发明了密度矩阵重正化群的计算方法,并在S = 1 反铁磁海森堡模型自旋链中直接看到S = 1/2 的自旋边界态和体内有限大小的Haldane gap (如图2(b,c) 所示)White [1992], White and Huse[1993]; 而整数和半整数自旋的反铁磁自旋链,还可以推广的具有偶数和奇数条腿的S=1/2 反铁磁海森堡自旋梯子,如图2(a) 所示,对于自旋梯子的量子蒙特卡洛模拟中,整数和半整数自旋在能谱上的不同也被清楚地看到Dagotto and Rice [1996]。 实验学家嗅觉也异常灵敏,80 年代便有实验数据显示了Haldane gap 的存在。后来陆续不少实验验证了基态的无序,以及参杂后断链处出现S = 1/2 的边界磁矩。图3中显示的是S = 1 的反铁磁自旋链材料CsNiCl3的非弹性中子散射谱Kenzelmann et al. [2002],人们清楚地看到了自旋能隙。
图3. 自旋链材料CsNiCl3 的中子散射谱,Ni2+ 离子自旋S=1,排成链狀。转移动量Qc=1.00 处的自旋能隙清晰可见。 现在,我们回到理论上的问题,尝试着从凝聚态场论的角度,理解Haldane 大叔的猜想和其中拓扑思想的精髓。Haldane 首先指出反铁磁自旋链的低能有效作用量可以用拓扑O(3) Nonlinear sigma(NLS)模型来描述。人们熟悉的通常的O(3) NLS 作用量为
Haldane 指出,需要在上述作用量的基础上加上一个现在被称为θ-term 的拓扑项(两者合起来被称为拓扑NLS) 其中 = 2S,S 可以为整数或者半整数,n(x; t) 是单位矢量,j2直播,描述连续时空中的自旋场局域反铁磁序的方向,(x; t) 是2 维连续时空坐标(术语叫1+1 维)。这个拓扑项θ-term 正是Haldane 猜想产生的根源。 为了看清这个θ-term 的影响,我们不妨先不考虑它,看看普通的NLS 中会发生什么。如果把NLS 中的单位矢量 n换成标量? , 则其经典运动方程为:,从而给出色散关系:,在k = 0 处, 系统是无能隙的。但是,由于n 是单位矢量,各个方向的运动方程互相制约,不再是线性的,结果会导致系统能谱有一个有限的能隙。能隙的产生可以从n(x; t) 在1+1 维路径积分中的拓扑非平庸的涨落来理解,如图4(b) 所示。我们注意到1+1 维反铁磁自旋链的NLS 存在一个经典的孤子解(或瞬子),即所谓的skyrmion,如图4(c) 所示,其自旋构型像一个刺猬球,是拓扑非平庸的。在skyrmion 构型中,当跑遍时空每一点,局域反铁磁序n(x; t)的指向正好遍历球面上的所有方向一次。用拓扑的语言来说,反铁磁序参量n(或自旋指向)在时空中的缠绕数是1。 (责任编辑:本港台直播) |