2017-08-18 13:14 来源:36氪 人工智能 /技术 编者按:本文来自微信公众号“将门创投”(ID:thejiangmen),36氪经授权发布。 人类希望通过人工智能可以从机械繁琐的工作中解放出来。早在20世纪80年代,人工智能的研究主要集中在专家系统和模糊逻辑等分支。 随着计算能力的增强和相应成本的降低,用机器来解决大规模优化问题变得可行。再加之硬件和软件的进步,现在的人工智能主要是使用神经网络和其他学习方法来识别和分析预测器,也称为特征,或者可理解为具有经济价值、和分类器一起用来开发可盈利模型的因子。这种人工智能的应用通常是通过机器学习(ML)来实现的。 以人工智能为基础的交易策略应用,无论是在短期还是长期投资,都越来越受青睐,还活跃在很多的对冲基金中。但由于各种因素,要想广泛接受这种新技术仍是缓慢的,最重要的是发展人工智能所需要的新工具和人才的投入。 大多数基金使用的是基本面分析(fundamental analysis),因为MBA项目中就是这么教的。没有多少对冲基金是完全依赖人工智能。人工智能的应用在零售层面上发展突飞猛进,但相较之下大多数交易员仍在使用20世纪中期提出的方法,包括传统的技术分析,因为它们很容易上手和应用。 需要注意的是,AI和ML不仅用于制定交易策略,而且还用于其他领域,例如开发流动性搜索算法和给客户的投资组合提建议。因此,随着人工智能应用程序的普及,参与交易和投资决策的人数量在减少,显然这对市场和价格行为也会带来影响。 目前人工智能对该行业的总体影响进行预测还为时过早,但人工智能的普及将会带来更有效、更稳定、波动更小的市场。这并不是空穴来风,因为技术会让人类对信息的主观判断的影响最小化,同时也会减少相关噪音的干扰。但具体在实际中将如何演进,我们还要拭目以待。 人工智能与机器学习的早期影响 人工智能技术在应用的最初阶段,我们还是有机会去了解它是如何管理风险的。基于人工智能的交易策略可能会出现的一个问题是,他们产生的模型可能比随机还要差。 我要说的是,传统的技术分析是一种无利可图的交易方式,因为基于图表模式和指标的策略在交易成本之前从一个零均值的分布中获得回报。我们总是会在图像分部的右尾看到一些交易员,这就给人一种错觉,好像这种方法是有经济价值的。 但我的研究表明,特别是在期货和外汇市场上,无论采用哪种方法,长期盈利都很难实现,因为这些市场本身就是为做市商(Market maker)而设计的。但在短期内,一些运气好的交易者可以在杠杆市场中获得巨大的利润。然后,他们就将成功归因于他们的策略和技能,而不是运气。 有了AI和ML,就带来了更多的可能,比如机器学习算法中的偏差-方差权衡(Bias-Variance Tradeoff)。数据挖掘偏差的结果可能会出现对旧数据过拟合而在新数据上瞬间就失效了,或者由于策略过于简单而错过了抓取有价值的重要数据信息。这种交易会比随机策略还要糟糕,甚至在交易成本增加之前,这些交易者的收益率分布也会呈现负偏态。这为大型基金和后量化宽松时代的投资者提供了一个获利的机会。 然而,随着那些比随机还不靠谱的”人工智能”交易员被从市场淘汰,只有那些拥有稳健模式的交易员仍在继续,争夺利润的斗争将变得激烈起来。现在推测人工智能交易员或大型投资者是否会赢得这场战斗还为时过早。然而,随着不靠谱AI交易员被市场所淘汰,留下的都是稳健型交易,利润争夺也会越来越激烈。最终AI交易员和大型投资者,鹿死谁手,犹未可知… 我还想提一下人们对这个领域常有的误解:有些人认为价值是在于使用了机器学习算法。实际上并不是这样。真正的价值在于所使用的预测因子或特征。算法就算再强大也不能在没有金矿的地方挖到金子。现在的问题就是大多数ML从业人员想使用同样的预测器,并尝试以迭代的方式开发模型,从而产生最好的结果。 但数据挖掘的偏差往往会导致失败。也就是说,数据挖掘的偏差来自于把数据多次使用到各种模型里,直到在训练和测试的样本中得到满意的结果,atv,这其实是很不靠谱的。 我在这个领域的研究表明,如果一个简单的分类器,比如二元逻辑回归,不能很好地运用一组给定的预测器,那么它就很有可能没什么经济价值。因此,成功的关键其实是特征工程,这既是一门科学,同时也是一门为经济价值的特征,需要知识、经验和想象力相结合的综合学科,目前只有一小部分专业人士能做到这一点。 人工智能和机器学习对技术分享的影响 (责任编辑:本港台直播) |