本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

不是标题党!AI可能真的要代替插画师了...

时间:2017-08-16 04:13来源:本港台直播 作者:j2开奖直播 点击:
事先声明,这篇文章的标题绝不是在耸人听闻。事情的起因是在朋友圈看到同学在转发一篇论文,名字叫《Create Anime Characters with A.I. !》(论文地址),打开一看,论文主要是通过各式

事先声明,atv,这篇文章的标题绝不是在耸人听闻。事情的起因是在朋友圈看到同学在转发一篇论文,名字叫《Create Anime Characters with A.I. !》(论文地址),打开一看,论文主要是通过各式属性生成二次元人物的头像,使用的方法是cGAN,效果非常impressive。

下图左侧为通过属性blonde hair, twin tails, blush, smile, ribbon, red eyes生成的人物,右侧是通过属性silver hair, long hair, blush, smile, open mouth, blue eyes生成的人物,都表现得非常自然,完全看不出是机器自动生成的:

模型生成的随机样本:

固定cGAN噪声部分生成的样本,此时人物具有不同的属性,但是面部细节和面朝的角度基本一致:

更加令人兴奋的是,作者搭建了一个网站,任何人都能随时利用训练好的模型生成图像,进行实验!网站的地址为:MakeGirls.moe。

打开网站后需要等待进度条加载完毕,这个时候是在下载模型:

这里的按钮的含义都比较简单,总的来说我们要先选定一些属性(完全随机也是可以的),然后点击左侧的generate按钮生成:

完全随机生成的结果,看起来非常好:

选择发色(Hair Color)为金色(Blonde),发型(Hair Style)为双马尾(Twin Tail),点击生成,效果同样很赞!如下图:

技术细节

我之前也写过两篇文章,一篇介绍了GAN的原理(GAN学习指南:从原理入门到制作生成Demo),atv,一篇介绍了cGAN的原理(通过文字描述来生成二次元妹子!聊聊conditional GAN与txt2img模型),这两篇文章都是以生成二次元人物来举例,但是生成的结果都比较差,只能看出大概的雏形。今天的这篇论文大的技术框架还是cGAN,只是对原来的生成过程做了两方面的改进,一是使用更加干净、质量更高的数据库,二是GAN结构的改进,下面就分别进行说明。

改进一:更高质量的图像库

之前使用的训练数据集大多数是使用爬虫从Danbooru或Safebooru这类网站爬下来的,这类网站的图片大多由用户自行上传,因此质量、画风参差不齐,同时还有不同的背景。这篇文章的数据来源于getchu,这本身是一个游戏网站,但是在网站上有大量的人物立绘,图像质量高,基本出于专业画师之手,同时背景统一:

除了图像外,为了训练cGAN,还需要图像的属性,如头发颜色、眼睛的颜色等。作者使用Illustration2Vec,一个预训练的CNN模型来产生这些标签

改进二:GAN结构

此外,作者采取了和原始的GAN不同的结构和训练方法。总的训练框架来自于DRAGAN(arxiv),经过实验发现这种训练方法收敛更快并且能产生更稳定的结果。

生成器G的结构类似于SRResNet(arxiv):

判别器也要做一点改动,因为人物的属性相当于是一种多分类问题,所以要把最后的Softmax改成多个Sigmoid:

详细的训练和参数设定可以参照原论文。

一些问题

虽然大多数的图像样本都比较好,但作者也提出了该模型的一些缺点。由于训练数据中各个属性的分布不均匀,通过某些罕见的属性组合生成出的图片会发生模式崩坏。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容