DotA 2中有上百种不同的英雄角色,各具不同的能力和优势。而AI掌握的只是其中一个英雄:Shadow Fiend(影魔)。影魔通常会立刻展开攻击,而不是在一段时间内学习掌握更复杂的攻击技能,这更加有利于发挥AI在信息和反应方面的优势。 所以,鉴于1v1主要比拼机械技能,AI击败人类玩家并不奇怪。鉴于游戏环境被严格限制,造成一些列战术和策略也被限制,而且对战中几乎没有必要进行长期规划或协调。 △DotA 2中的影魔 再次重申我的结论:这次AI击败DotA玩家,比在围棋中击败人类冠军要容易得多。人类没有在AI领域突然取得突破。 这次在DotA对抗中之所以AI获胜,是因为研究人员聪明的设置了问题,使得AI可以绕过目前人工智能的技术限制。 据说这个OpenAI训练这个AI打DotA花了2周。与之相比,AlphaGo在Google的GPU集群上进行了数月的分布式大规模训练。两个程序之间的计算要求有着数量级的区别。 好吧,最后夸夸这个会玩DotA的AI,到底有何精彩之处? 完全通过自学训练 AI不需要任何训练数据,也不会从人类的比赛中学习。整个学习过程随机开始,并且通过和自己对抗进行学习。虽然这不是什么新技术,但令人惊讶的是,AI学会了人类玩家已经在使用的技术。这很酷。 AI可能还有其他技术,甚至人类都不知道。这与我们在AlphaGo中看到的类似,围棋选手已经开始学习AI的下棋方式。 AI+电竞的重要一步 在具有挑战性的环境中(例如DotA 2和星际2)来测试AI技术是非常重要的。AI可以为游戏提供更多的价值,游戏也会助推AI更快发展。 不完美信息 在DotA对决中,人类玩家智能看到地图的一小部分,视线受到妨碍。AI可能也一样,虽然还不清楚OpenAI如何处理这个问题的细节。 这意味着与围棋、国际象棋、Atari游戏机等环境不同,AI在DotA中处于一个部分可观察的环境,而无法获知关于游戏当前状态的完整信息。这类问题通常难以解决,话虽如此,但目前还不清楚1v1的DotA 2比赛中,视野的重要性到底几何。 不管怎样,非常期待看到OpenAI关于这次比赛的技术报告。 (责任编辑:本港台直播) |