本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

wzatv:解惑!卷积神经网络原来是这样实现图像识别的(2)

时间:2017-08-12 22:31来源:118图库 作者:j2开奖直播 点击:
CNN如何通过滤临近连接?秘密是添加了两种新的层:池化和卷积层。我们将以下述方式分解这个过程:使用一个被用于某种用途的,比如说,确定一张图片

CNN如何通过滤临近连接?秘密是添加了两种新的层:池化和卷积层。我们将以下述方式分解这个过程:使用一个被用于某种用途的,比如说,确定一张图片中是否包含祖父。

该过程的第一步是卷积层,直播,其本身又包含几个步骤。

·首先,我们将把祖父的图片分解成一系列重叠的3 * 3像素的拼图。

·之后,我们将通过一个简单的单层神经网络来运行这些拼图,权重保持不变。将瓷砖排列组合,当我们保持每个图像尺寸是小的(在这种情况下为3 * 3)时,神经网络需要处理它们保证可控与小型化。

·然后,将以数字表示照片中每个区域的内容的数组进行输出值排列,其中坐标轴表示颜色,宽度和高度。所以,对于每个拼图,在这种情况下,我们将有一个3 * 3 * 3的表示。(如果我们谈论祖父的视频的话,我们会抛出第四个维度——时间)。

·下一步是池化层。它采用这些3或4维阵列,并与空间维度一起应用下采样功能。结果是一个池数组,其中仅包含重要的图像部分,同时丢弃剩余部分,这最大限度地减少了需要完成的计算量,同时也避免了过度拟合问题。

采用下采样阵列作为常规全连接神经网络的输入。由于使用池和卷积,输入的大小已经大大降低了,所以我们现在必须拥有普通网络能够处理的一些东西,同时保留最重要的数据部分。最后一步的输出将代表系统对于祖父图片的确信度。

在现实生活中,CNN的工作过程错综复杂,涉及许多隐藏、池化和卷积层。除此之外,真正的CNN通常涉及数百或数千个标签,而不仅仅是单一标签。

如何构建卷积神经网络?

从零开始构建CNN可能是一项昂贵而耗时的工作。话虽如此,人们最近开发了一些API,旨在使不同组织能够收集不同的见解,而无需自己研究机器学习或计算机视觉专业知识。

谷歌 Cloud Vision

GoogleCloud Vision是谷歌的视觉识别API,并使用REST API。它基于开源的TensorFlow框架。它检测单个面部和物体,并包含一个相当全面的标签集。

IBM沃森视觉识别

IBM沃森视觉识别是沃森开发者云(Watson Developer Cloud)的一部分,并附带了一大批内置的类别,但实际上是为根据你提供的图像来训练自定义定制类而构建的。它还支持一些很棒的功能,包括NSFW和OCR检测,如Google Cloud Vision。

Clarif.ai

Clarif.ai是一个新兴的图像识别服务,也使用REST API。关于Clarif.ai的一个有趣的方面是它附带了一些模块,有助于将其算法定制到特定主题,如食物、旅行和婚礼。

尽管上述API适用于少数一般应用程序,但你可能仍然需要为特定任务开发自定义解决方案。幸运的是,许多库可以通过处理优化和计算方面来使开发人员和数据科学家的生活变得更加容易,从而使他们专注于训练模型。有许多库,包括Theano、Torch、DeepLearning4J和TensorFlow已经成功应用于各种应用。

卷积神经网络的有趣应用

自动将声音添加到无声电影

为了匹配无声视频,系统必须在此任务中合成声音。该系统使用千个视频示例进行训练,用鼓棒击打不同的表面,产生不同的声音。深度学习模型将视频帧与预录音的数据库相关联,以选择与场景中发生的完全匹配的声音。然后系统将借助于类似于图灵测试的设置进行评估,人们必须确定哪个视频具有假(合成)或真实的声音。这是卷积神经网络和LSTM循环神经网络中非常酷的应用。返回搜狐,查看更多

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容