本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

报码:如何七周成为数据分析师15:读了本文,你就懂了

时间:2017-08-09 21:26来源:天下彩论坛 作者:开奖直播现场 点击:
2017-08-09 12:10 来源:人人都是产品经理 数据分析 原标题:如何七周成为数据分析师15:读了本文,你就懂了概率分布 本文是《如何七周成为数据分析师》的第十五篇教程,如果想要了解

2017-08-09 12:10 来源:人人都是产品经理 数据分析

原标题:如何七周成为数据分析师15:读了本文你就懂了概率分布

本文是《如何七周成为数据分析师》的第十五篇教程,如果想要了解写作初衷,可以先行阅读七周指南。温馨提示:如果您已经熟悉概率分布,大可不必再看这篇文章,或只挑选部分。

报码:如何七周成为数据分析师15:读了本文,你就懂了

我们已经了解概率的基础,概率中通常将试验的结果称为随机变量。随机变量将每一个可能出现的试验结果赋予了一个数值,包含离散型随机变量和连续型随机变量。

掷硬币就是一个典型的离散型随机变量,离散随机变量可以取无限个但可数的数值。而连续变量相反,它在某一个区间内能取任意的数值。时间就是一个典型的连续变量,1.25分钟、1.251分钟,1.2512分钟,它能无限分割。

既然随机变量可以取不同的值,统计学家就用概率分布描述随机变量取不同值的概率。相对应的,有离散型概率分布和连续型概率分布。

对于离散型随机变量x,定义一个概率函数叫f(x),它给出了随机变量取每一个值的概率。

拿出一个骰子,掷到6的概率是f(6) = 1/6,掷到1和6的概率则是f(1)+f(6) = 1/3。

数学期望和方差

现在有一个运营活动,两套抽概率方案,如下:

报码:如何七周成为数据分析师15:读了本文,你就懂了

作为运营人员,atv,应该怎么衡量两种抽方法的好坏呢?

数学期望是对随机变量中心位置的一种度量。是试验中每次可能结果的乘以其结果的总和。简单说,它是概率中的平均值,可以用期望对比两套方案。

假设一等奖成本1000元,二等奖成本500元,三等奖成本100元,欢迎下次再来当然没钱,而用户参加一次抽奖需要5元。我们将概率问题转换成运营方的收益和成本计算期望(下面的盈亏是公司角度的)。

报码:如何七周成为数据分析师15:读了本文,你就懂了

于是E(x) = (-990*5%)+(-490*10%)+(-90*20%)+(10*65%) = -110。也就是说,A方案能够期望每次抽奖运营方亏损110元。计算一下B方案,则是亏损150元。如果从用户的角度看,每一次抽奖的期望则反过来,即一等奖能受益990元,二等奖能受益490元…A方案玩一次平均收益110元。

想必大家已经知道了如何设计活动的盈亏机制,感兴趣可以自行调节中奖概率和成本。

期望值衡量概率的平均值,可是抽奖本来就是很激动人心的事情,哪怕明知道会赔钱,人们还乐此不疲,为什么?因为风险,因为以小搏大。

方差就是这种风险的度量,即随机变量的变异性。它和描述统计学的方差是一个含义。

方差越大,随机变量的结果越不稳定,计算A方案的方差如下:

报码:如何七周成为数据分析师15:读了本文,你就懂了

方差最后为62600,说明期望的波动很大。标准差为sqrt(62600) = 250.19,代表每一次的抽奖,与期望收益-110的距离是250.19元。

到这里,概率和期望方差的基本玩法已经讲完了。

二项概率分布

二项分布是一种离散型的概率分布。故明思义,二项代表它有两种可能的结果,把一种称为成功,另外一种称为失败。

除了结果的规定,它还需要满足其他性质:每次试验成功的概率均是相同的,记录为p;失败的概率也相同,为1-p。每次试验必须相互独立,该试验也叫做伯努利试验,重复n次即二项概率。

掷硬币就是一个典型的二项分布。当我们要计算抛硬币n次,恰巧有x次正面朝上的概率,可以使用二项分布的公式:

假设抛硬币5次,恰巧有3次正面朝上,则其概率为31.25%。可以使用Excel中的BINOM.DIST函数计算。

不妨把题目变化一下,变成计算硬币至少有三次正面朝上的概率是多少?有一种简单的方法是累加,将恰巧有3次,恰巧有4次,恰巧有5次的概率相加,结果便是至少3次,为50%。

回到运营活动的例子,上面一个运营活动公司亏惨了,现在运营需要重新做一个抽奖活动,每位用户拥有10次抽奖机会,中奖概率是5%。老板准备先考虑成本问题,想知道至少有3次以上中奖机会的概率是多少?

按照上题的思路,可以拿恰巧3次,恰巧4次直到恰巧10次累加求和,但是这样太麻烦了。此时可以换一个思路,先计算最多2次的概率是多少。那么便是f(0)+f(1)+f(2),结果是92.98%,利用概率公式1-92.98%,就是至少3次的概率了,为7.02%。看来老板还是能松口气的。

二项概率的数学期望为E(x) = np,方差Var(x) = np(1-p)。抽奖10次,那么抽奖的期望值就是1,方差为0.9。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容