2017-08-04 14:57 来源:人人都是产品经理 机器人 /技术 本文是来自作者私下组织的讨论会,主要是讨论了四个话题,分别有关AI产品经理、语音交互和聊天机器人,在此总结出来与你分享。enjoy~ 前天(8月2日)晚会的闭门会,大家讨论太投入了,原定1个半小时,结果足足进行了2个小时! 非常感谢6位“AI产品经理大本营”团员和特邀嘉宾@赵帅(人人都是产品经理专栏作家,前微软小冰创始团队产品经理,现优护家联合创始人/COO)的参与!下面是干货整理,分享给大家: 话题1:AI产品经理与互联网产品经理的区别 A:计算机发展百年,本质是信息连接……使用高效的方式(机器+交互),使信息知识的传递达到同频。第一批产品经理大量产生于web1.0,第二批产品经理产生于移动互联网时代,而第三批将产生于AI时代。 产品经理的批量化涌现,源于流量方式的改变(而流量又和交互息息相关)。而AI,正是带来了交互方式的本质改变。从智能手机到物联网,人不再跟一款产品进行对话,而是可以同时与多种产品进行对话。每一次交互,就是一个流量(流量的场景、定义和价值,都可能会有很大的变化)。流量的方式由点到线的改变,再由线到面的进化,人类获取知识信息的方式正在变化。 百度开发Duer OS的重要原因是因为数据(流量)资源枯绝。通过Duer OS连接智能终端,每个智能硬件终端链接一个人(或多个),机器可以获取的信息规模变大 。 AI需要的是人才、场景、数据、算法。 B:AI产品经理与互联网产品经理的共同性在于,都需要考虑产品、用户、场景。在互联网的时代,用户对已知生态圈产生了熟悉感,而AI产品经理需要考虑如何设计产品才能让用户很快适应新的生态圈——新的场景,具有很深的可挖掘性。 C:互联网是线性结构,而AI是非结构化,不好对信息进行归类。把AI比作人的神经元,需要通过终端来进行声光电的信息采集,并且需要大的存储空间。AI需要比互联网更强大的计算能力,且需要行业的业务专家把知识灌输到机器中,用可量化的数据模型进行总结,投入算法,再通过机器获取新的经验。 D:AI产品经理工作的复杂度比互联网产品经理要大得多。 打个比方来说,产品经理的工作产出是一个拳头,那么互联网产品经理的第一步MVP,是做一个目标拳头的mini版,是一个小的、明确的目标,并且可被拆分、倒推、可控。而AI产品经理,第一步MVP,是做一个握拳70%的拳头,还没有完全握紧,需要一点点的聚拢(大家自己脑补一下吧,哈哈……),是一个大概的雏形,从目标、效果、方案等等,都有各种不确定性。 比如从“数据”这个角度来说,从收集(TTS,3个月)、分析(看大量聊天对话数据,才能自己提炼规则feature)、应用(产品早期,数据的价值甚至大过技术模型算法)到测试(产品需求、TE测试、用户使用,数据集都是不一样的,越来越不可控)等等,每个环节都有很大不同。 从结果看,即使是大公司中级产品经理(总监级),也至少3-6个月来适用AI产品工作,甚至都很难有自己真正独到而深入的理解认知。因为即使前人把AI产品工作中的经验教训总结成文档,ta看了之后,在实际工作中还是会遇到各种长尾问题,还是得去问老同事;慢慢的,才能逐渐对各种AI技术概念和工作环节的信息内化成自己的认知。 话题2:语音交互会不会成为下一代的交互标准 A:语音交互解放双手,不受限制设备,可以在可穿戴设备,居家设备,音箱等上实现。音箱是一个非常好的设备选择,因为人不会和音箱聊天,但人会发号施令,语言很具体,使机器可以准确地接收到很多指令。 D:下一代交互标准可能是“多模态交互”,不仅是语音,还会延续文字,加上肢体,图像,表情传递等。这背后的原因在于: AI的核心差异化方向,atv,不是效率最优,而是情感最优。并且,人的决策,更容易受到感性影响,而非理性。(注:人类不寻求实现决策的最优化,而是采取令人满意的结果就够了。 ——诺贝尔奖获得者Herb Simon) (责任编辑:本港台直播) |