本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

报码:详解帝国理工集成工具TensorLayer:控制深度学习

时间:2017-08-02 20:31来源:本港台现场报码 作者:开奖直播现场 点击:
资源 | 详解帝国理工集成工具TensorLayer:控制深度学习开发复杂度 2017-08-02 11:17 来源:机器之心 操作系统 原标题:资源 | 详解帝国理工集成工具TensorLayer:控制深度学习开发复杂度 选自

资源 | 详解帝国理工集成工具TensorLayer:控制深度学习开发复杂度

2017-08-02 11:17 来源:机器之心 操作系统

原标题:资源 | 详解帝国理工集成工具TensorLayer:控制深度学习开发复杂度

选自NextPlatform

对于开发者而言,深度学习系统的交互性和复杂度正在增加。从建立不断迭代强化的可扩展性数据集,到更多动态模型,再到神经网络内部更加连续的学习,这使得通过轻量级工具全面管理深度学习开发的需求也越发强大。而 TensorLayer 正是这样一种可管理深度学习开发复杂度的工具。

「甚至在部署之后,新的训练样本、人类的见解以及操作经验会不断出现,因此升级模型并跟踪其变化的能力变得不可或缺。」伦敦帝国理工学院的一个团队说,他们开发了一个库,j2直播,用来管理深度学习开发者在复杂的多项目上做的迭代。「开发者必须用大量的开发周期整合构建神经网络的组件、管理模型生命周期、组织数据,以及调整系统并行性。」

为了更好地管理开发,该团队借助一个通用的 Python 库打造了 TensorLayer,这是一种集成的开发方法,其中所有的元素(操作、模型生命周期、并行计算、失败)被抽象为模块化格式。这些模块中的一个用于管理神经网络层,一个用于管理模型及其生命周期,一个通过为所有系统的训练数据提供统一的表征来管理数据集,另外还有一个工作流模块用于处理容错。顾名思义,TensorFlow 是进行训练和推断的核心平台,数据存储在 MongoDB 中,这是深度学习研究机构的常见设置。

报码:详解帝国理工集成工具TensorLayer:控制深度学习

深度学习开发人员利用 TensorLayer 功能写了一个多媒体应用。这些功能包括提供和输入层实现、构建神经网络、管理模型生命周期、构建在线或离线数据集,以及撰写训练计划等,分为四个模块:层、模型、数据集和工作流。

该团队说,尽管 Keras 和 TFLearn 等现有工具很有用,但扩展性不强,不足以应对越来越复杂和不断迭代的网络。它们提供必要的抽象化以降低采用壁垒(adoption barrier),但这样做也对用户掩盖了底层引擎(underlying engine)。尽管从底层调整和修改对 bootstrap 有益,且对于解决很多现实问题很有必要,但这是非常困难的。

与 Keras 和 TFLearn 相比,TensorLayer 不仅提供高水平的抽象化,还提供端到端的工作流,包括数据预处理、训练、后处理、服务模块和数据库管理,这些都是开发者构建整个系统的关键。

TensorLayer 提倡灵活性和可组合性更强的范式:神经网络库可以和私有引擎(native engine)互换。这使得用户可在不丢失可见性的情况下轻松使用预构建模块。该非侵入式本质也使得合并其他 TF 包装器,如 TF-Slim 和 Keras 变得可行。但是,该团队认为灵活性不能以性能为代价。

此团队在以下论文中重点强调了许多应用,开奖,也详细介绍了每一个模块、整体架构和发展现状。这些应用包括生成对抗网络(generative adversarial network)、深度强化学习(deep reinforcement learning),以及终端用户环境的超参数调节。TensorLayer,自去年从 GitHub 发布后,还被用于多模型研究、图像变换和医学信号处理。

TensorLayer 正处在一个主动发展的阶段,而且已经从开放社区接收到大量的贡献性工作。它已经被帝国理工学院、卡内基梅隆大学、斯坦福大学、清华大学、加州大学洛杉矶分校、瑞典林雪平大学等高校的研究人员,以及谷歌、微软、阿里巴巴、腾讯、ReFULE4、彭博等公司的工程师广泛使用。

论文:TensorLayer: A Versatile Library for Efficient Deep Learning Development

报码:详解帝国理工集成工具TensorLayer:控制深度学习

论文地址:https://arxiv.org/abs/1707.08551

项目地址:https://github.com/zsdonghao/tensorlayer

深度学习强力地推动了计算机视觉、自然语言处理和多媒体等领域的发展。然而开发一个深度学习系统通常十分困难和复杂,因为它经常涉及到构建神经网络架构、管理正在训练或已训练的模型、调整优化过程、预处理和组织数据等过程。TensorLayer 是一个通用型的 Python 库,旨在帮助研究者和工程师高效地开发深度学习系统。它为神经网络、模型和数据管理、并行工作流机制提供了丰富的抽象化方法。TensorLayer 在提升效率的同时,它还保留性能和可扩展性。TensorLayer 先前已经发布在 Github 上,并且已经帮助很多学术研究员和工业应用者开发深度学习现实应用。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容