另外,为了验证 SE 模块的泛化能力,我们也在除 ResNet 以外的结构上进行了实验。从上表可以看出,将 SE 模块嵌入到 ResNeXt、BN-Inception、Inception-ResNet-v2 上均获得了不菲的增益效果。由此看出,SE 的增益效果不仅仅局限于某些特殊的网络结构,它具有很强的泛化性。 上图展示的是 SE 嵌入在 ResNeXt-50 和 Inception-ResNet-v2 的训练过程对比。 在上表中我们列出了一些最新的在 ImageNet 分类上的网络的结果。其中我们的 SENet 实质上是一个 SE-ResNeXt-152(64x4d),在 ResNeXt-152 上嵌入 SE 模块,并做了一些其他修改和训练优化上的小技巧,这些我们会在后续公开的论文中进行详细介绍。可以看出 SENet 获得了迄今为止在 single-crop 上最好的性能。 最后,在 ILSVRC 2017 竞赛中,我们的融合模型在测试集上获得了 2.251% Top-5 错误率。对比于去年第一名的结果 2.991%, 我们获得了将近 25% 的精度提升。 更多技术上和实验上的细节将会展示在即将公开的论文中。 Momenta CVPR 2017 系列专栏: (责任编辑:本港台直播) |