自此,我们首先可以注意到,智能技术对劳动力市场的影响并非均质。Erik Brynjolfsson和Andrew McAfee在《与机器赛跑》中指出,教育程度较低、薪酬较低的劳动者更易被智能技术取代,同时他们也更难以获得新的职业技能,因而这群劳动者在结构性失业中受到的损害被加重;Paul Krugman一针见血地指出,全能且高效的工作机器人(workbot)的出现,未必会让世界变得美好,因为没有能力拥有机器人的那些人,处境将非常悲惨。尽管这方面的研究还很少,但现有的一些研究显示:在高度自动化、智能化的工作环境下,教育和技能水平较低的劳动者,正在面临劳动环境恶化、劳动强度增大、收入降低、缺乏劳动和社会保障等挑战,此种现象在“分享经济”形态中普遍可见。在一些极端的情况下,劳动者被异化成“数字机器上的幽灵”和“生产线上的奴隶”。 作者邱林川讨论了新形势下的奴隶—i奴 另外,智能技术可能正在加深对社会弱势群体的偏见和歧视。Wendy Chun认为“机器学习就像偏见的洗钱”,通过机器学习,偏见和歧视被包装成模型和算法,使不公正变得更加隐秘而影响深远:职场社交网站LinkedIn的搜索引擎更青睐男性求职者,Google的广告平台Adsense存在种族偏见,饱受争议的“预测性执法”(predictive policing)对非裔美国人和穆斯林形成结构性歧视,低收入人群会因为智能技术更难从贫困中逃脱。性别、种族、宗教信仰、收入……现实中的各种偏见与歧视,似乎都在智能技术中找到了落脚点。 除此以外,智能技术还被用于控制大众情绪。通过操控用户从新闻订阅渠道看到的信息,Facebook成功地调节了用户发帖的情绪,从而证明情绪可以在大量在线用户之间传染。一份曝光的材料显示,JTRIG(联合威胁研究智能小组,隶属于英国情报和国家安全机关政府通信总部)已经在通过Youtube、Facebook、Twitter、博客、论坛、电子邮件、短信、自建网站等渠道操纵大众情绪,从而消除“犯罪、安全和国防威胁”。在政治领域,智能技术可以诱导选民做出片面的判断(Cathy O’Neil在2015年的发言);而在商业领域,其向消费者灌输消费理念,使他们成为对不断更新换代的消费品上瘾的“被制造的奴隶”(manufactured slave)。 JTRIG(Joint Threat Research Intelligence Group)是GCHQ(Government Communications Headquarters政府通讯总部)的一部分,图片来源:网络 早在1980年代中期,研究者们就围绕“计算机伦理是否具有独特性”这一问题展开讨论。Johnson认为,计算机伦理只是把标准的道德问题以新形式呈现,逼迫我们在新的领域中延续旧的道德规范,它本身不是一个独特的新题目。而James Moor则认为,计算机会大幅度转化/强化现有的伦理问题,并且造成过去未曾出现过的新伦理问题,因此计算机伦理本身就是一个独特的新题目。 这两种观点,对于我们全面认识智能技术的伦理问题,有着重要的启发意义。我们既需要充分了解智能技术的独特性,及其对伦理问题带来的独特影响,又必须认清新技术背后潜藏的旧有冲突、斗争和伦理准则,直播,这样才能准确把握智能技术的伦理方向,使其向着对广大民众有益的方向发展。 (责任编辑:本港台直播) |