第二是用户,比如甜品货架前的客人男女比例如何,平均体型偏胖还是偏瘦;客人站在货架前,眼睛最习惯首先往哪里看(以推算出货架真正的黄金位置)。 实际上之所以这么推测,也是因为在物体识别领域,计算机视觉普遍被认为是识别人与商品的未来主流方向,开奖,我们曾经介绍过的 Amazon Go 就是一个典范。阿里在这个方向上显然也是很有想法,「淘咖啡」公测前不久,阿里宣布负责 Amazon Go 首席科学家任晓枫加盟,巧合中有必然。 深度决策算法: 这主要是用在后台的数据回流和数据挖掘。这其实也是无人超市最大的意义所在,无论是 Amazon Go 还是蚂蚁金服,雇一堆身价很高的工程师来研发无人超市,可不只是让大家体验一把黑科技的酷炫感的。其背后最大的价值,在于回收、分析基本面数据(比如商场热力图)以及沉淀用户画像,以帮助线下实体店更高效、更精准地优化供应链以及货架的摆放。 比如,工作日和周末、各种小长假中,在最显眼的展架上该放什么商品;还能根据客人的平均身高来调整货架的高低。甚至还能做一些预测,比如看到什么样的产品放在偏僻的地方仍然会有不错的销量,那么就要进行相应调整,让大家更容易发现它们。 说到算法模型,对蚂蚁金服来说一直是比较擅长的。AI 在其各业务场景都起到底层技术支撑,如保险、理财、小额贷款、智能客服等等。这应该是之后会在「无人便利店」这样的场景下深挖的一部分内容。 多模态识别: 刚才说了,除了计算机视觉,「淘咖啡」还叠加运用了传感器。在业界,大家都有一个基本的共识,单一维度的技术往往很难保证足够的安全性和足够好的体验感,所以,无论是物联网还是生物识别,只要想在商用场景落地,都会考虑叠加运用几种技术来进行交叉验证,也就是多模态识别。 Amazon Go 也是采用的计算机视觉+传感器感应(可能还有+生物识别)来降低误判率。因此,市场中有做物联网支付方案的公司强调说自己用的是纯计算机视觉,而实际上这对树立投资界以及公众对其进入商用的信心和安全感,并没有什么好处。 「淘咖啡」的客人在挑好东西后,要通过一个「支付门」才能出去。这个门每次只能一人进去,门里的各种摄像头和接收器要对人和商品做即时识别。 现场有人做了踢馆测试:几个商品横七竖八随意放在购物袋里;一些商品放在购物袋,一些放在书包里,一些拿在手上。最后都轻松通过并扣款无误,这似乎也说明,「淘咖啡」内不仅仅是计算机视觉技术这一种。 下面来看看蚂蚁金服工程师内测的 GIF: 结合「支付门」里布置的摄像头以及感应接收器,我推断「淘咖啡」是混搭结合了 RFID 天线,你可以理解为是增强版 RFID,以扩大天线的覆盖范围,加强对商品位置的定位,减少误读。 另外值得注意的是,蚂蚁金服官方披露的技术方案中有生物识别,但从现场体验来看,人是不需要在摄像头前特地停留以配合识别的,所以估计这其中用了人脸+体态+体重等多维识别。 这个「支付门」是「淘咖啡」区别于其他无人超市的一个亮点,同时也是一个缺点,至少在现阶段来看。因为用户在经过这个门时,并不能真的「即拿即走」,还需要等五六秒左右才能出门。 据介绍这个等待的时间不是系统识别和自动划扣造成的,是滑动门造成的,根据行业标准规定,它的安全关门速度就得这样……好吧,所以这个门应该是个过渡阶段的版本。 以上,是根据体验以及询问之后,我们做出的一些猜想,虽然看起来可能离我们实际生活还有一段距离,但我们很欣喜的看到,从「无现金」再到「无人」的一系列变化,我们生活中的一些场景确实因为科技的进步在发生变化。 当然,「无人超市」要做到真正无人还是有距离的,至少在上货、运营维护甚至在商品数据库如何建立上都要投入人力来完成,并且被人不看好的另一个原因是如何能降低成本,尽量降低风险,这也都是我们这个社会对其发起的挑战,商业模式究竟如何落地,最终都是值得关注的。 (责任编辑:本港台直播) |