我们去年写过深度学习座下的四大神兽,如今这四大神兽已渐次长成,而孕育他们的中美两大创新强国,正在技术与人才的竞争合作中你追我赶,好不热闹。 线性资本专注于早期数据智能的投资,我们在中美量过之间人工智能的技术和产业发展做了一些思考。以下内容整理自线性资本合伙人王淮今天上午在F50中美创新大会上的分享,enjoy: 十年前,我们很难想象我们认识和不认识的人会被一张网无时无刻牢牢的连接在一起。今天,我们也很难想象天天操心的很多事将会在十年后基本上没我们什么事。今天要吃啥,去哪吃,怎么去,买什么衣服好,怎么搭配,赚了多少钱,atv,钱应该怎么花,财应该怎么理,该给谁的朋友圈点赞,机器出方案,你来做决定。甚至你根本就没资格做这个决定,机器帮你做了,而且做得更好。机器的询问无非是让你感觉稍微好一点而已。 我刚才描述的人工智能指导我们生活的几个场景,并非天方夜谭,也不是科幻,这一切正在逐步发生,不以个体的喜好而转移。 我是王淮Harry, 线性资本的合伙人,原来是一个工程师,曾经读过机器学习的PhD,但拿了硕士之后就耐不住寂寞去了硅谷,在美国待了9年时间。我在Facebook还是一家100来个人的时候加入,5年后离开。看着Facebook 从一家小数据公司变成一家处处强调数据驱动的大公司,在我看来,Facebook 应该是最懂得大数据实践到今天的人工智能实践的标杆公司之一,可谓理念,理论和实践并重。同一行列的科技大公司还有谷歌,亚马逊,百度,阿里,腾讯正在发奋追赶中,算半个;其他要么缺理论,要么缺实践。 2012年回国之后,我做了2年天使投资,投了近40家公司。在2014年9月份和另外一位小伙伴张川创办了线性资本,在过去3年内,线性资本一步步聚焦到一件事,只有一件事上 - 数据智能的早期投资。我们基金规模是1亿美元,到目前为止投了数据智能领域大概30多家初创公司,包括很多人可能都听说过的地平线机器人,Rokid,神策数据,桃树科技,中科视拓等的天使轮。还包括今天会给大家分享的做智能医疗的连心医疗和做智能投顾的阿法金融。 今天我的核心观点是 - 人工智能一定会实用化,而中国在这方面的进展要快于美国。我希望在接下来的20分钟内,结合我过去在美国的经验,和在中国的实践,从技术型投资人的角度对中美两国人工智能产业发展做一个分析和比较。 首先,人工智能是一个实用性技术。它并非Rocket Science. 从学术上而言,它并非一个新生物。如果把人工智能之父Minsky在1956年召开第一个人工智能主题的会议当做研究开端的话,已经有70年历史。但一直到5年前我还在 Facebook 的时候,在公司里我们从来不提人工智能这个词,要么说自己是数据挖掘,最多说机器学习。但不会讲人工智能,因为让人工智能变得火爆的神经网络技术在当时并不成熟。在当时的工业界,系统性的大数据基础架构的工作都还在进行中,针对的场景问题大多是强特征的,对于神经网络特别擅长的表征提取能力并没有需求。如果没有最近几年的图像声音处理方面的需求爆发,深度学习实用化的进展不会如此之快。而图像声音处理的需求更要感谢智能手机的普及。今天一天产生的图片数大概是1000亿这个量级,是5年前移动时代所谓元年的100倍,这还不包括我们国家特别多的监控摄像头产生的数据量。 所以人工智能的火爆要感谢相机应用的火爆,相机应用的火爆要感谢智能手机的普及。所有事情都是连接到一些,水到渠成自然发展起来的。但人工智能的未来不能只依赖于图像处理。人工智能如果要想持续性的发展,其实用性一定会拓展,从现在流行的图像声音处理拓展到其他复杂特征的问题中。 其次,人工智能实用性的拓展,是需要这5个方面的配合。大数据,算法,算力,人才,和应用场景。我从这5个方面分析下中美的差异。 1.大数据,没有大数据就没有人工智能。 上面我提到了我真正认同的有大数据和人工智能理论和实践兼具的公司只有谷歌,atv,Facebook,亚马逊,百度和阿里巴巴。他们的数据够大。这些公司只属于两个国家,美国和中国。美国有3.5亿人口,人口世界第三,其中75%居住在城市或城市郊区,综合消费能力世界第一。中国15亿人口,处在一二线城市的人口数量大概是3亿,消费能力不弱,而且消费习惯正在升级中。加上还有巨大的农村市场。这两个国家最大的共同特点都是人口很多,所以产生的数据量很大。 (责任编辑:本港台直播) |